Effects of homogeneous and inhomogeneous static magnetic fields combined with gamma radiation on DNA and DNA repair
The aim of this study was to reveal whether static magnetic fields (SMFs) influence the repair of radiation‐damaged DNA on leukocytes or has any effect on DNA. After 4 Gy of 60Co‐γ irradiation, some of the samples were exposed to inhomogeneous SMFs with a lateral magnetic flux density gradient of 47...
Gespeichert in:
Veröffentlicht in: | Bioelectromagnetics 2010-09, Vol.31 (6), p.488-494 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this study was to reveal whether static magnetic fields (SMFs) influence the repair of radiation‐damaged DNA on leukocytes or has any effect on DNA. After 4 Gy of 60Co‐γ irradiation, some of the samples were exposed to inhomogeneous SMFs with a lateral magnetic flux density gradient of 47.7, 1.2, or 0.3 T/m by 10 mm lateral periodicity, while other samples were exposed to homogeneous SMF of 159.2 ± 13.4 mT magnetic flux density for a time period of 0.5 min, 1, 2, 4, 6, 18, 20, or 24 h. Another set of samples was exposed to the aforementioned SMFs before gamma irradiation. The following three groups were examined: (i) exposed to SMF only, (ii) exposed to SMF following irradiation by 60Co‐γ, and (iii) exposed to SMF before 60Co‐γ irradiation. The analysis of the DNA damage was made by single‐cell gel electrophoresis technique (comet assay). Statistically significant differences were found at 1 h (iSMF), 4 h (hSMF), and 18 h (hSMF) if samples were exposed to only SMF, compared to control. When the SMF exposure followed the 60Co‐γ irradiation, statistically significant differences were found at 1 h (iSMF) and 4 h (hSMF). If exposure to SMF preceded 60Co‐γ irradiation, no statistically significant difference was found compared to 4 Gy gamma‐irradiated group. Bioelectromagnetics 31:488–494, 2010. © 2010 Wiley‐Liss, Inc. |
---|---|
ISSN: | 0197-8462 1521-186X 1521-186X |
DOI: | 10.1002/bem.20577 |