15-Hydroxyeicosatetraenoic acid (15-HETE) protects pulmonary artery smooth muscle cells against apoptosis via HSP90

15-Hydroxyeicosatetraenoic acid (15-HETE), generated by hypoxia, is a product of arachidonic acid and mainly catalyzed by 15-lipoxygenase (15-LO) in pulmonary artery. As HSP90 is known to be involved in apoptosis in other tissues and cells, we aim to test whether anti-apoptotic effect of 15-HETE is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Life sciences (1973) 2010-08, Vol.87 (7), p.223-231
Hauptverfasser: Zhang, Lei, Ma, Jun, Li, Yaqian, Guo, Lei, Ran, Yajuan, Liu, Shulin, Jiang, Chun, Zhu, Daling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:15-Hydroxyeicosatetraenoic acid (15-HETE), generated by hypoxia, is a product of arachidonic acid and mainly catalyzed by 15-lipoxygenase (15-LO) in pulmonary artery. As HSP90 is known to be involved in apoptosis in other tissues and cells, we aim to test whether anti-apoptotic effect of 15-HETE is regulated by the molecular chaperone in pulmonary artery smooth muscle cells. To test this hypothesis, we performed cell viability analysis, mitochondrial potential assay, caspase-3 activity measurement, Western blot, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling with and without HSP90 inhibitor. Our results showed that both exogenous and endogenous 15-HETE up-regulated HSP90 expression and prevented PASMC from serum deprivation-induced apoptosis. Serum deprivation lead to mitochondrial membrane depolarization, decreased expression of Bcl-2 and enhanced expression of Bax, and activation of caspase-3 and caspase-9 in PASMCs. 15-HETE reversed all these effects in a HSP90-dependent manner. This study establishes the factor involved in 15-HETE-protecting PASMC from apoptosis and the regulation of HSP90 by 15-HETE may be an important mechanism underlying the treatment of pulmonary artery hypertension and provide a novel therapeutic target in future.
ISSN:0024-3205
1879-0631
DOI:10.1016/j.lfs.2010.06.019