Low Voltage Nanoelectromechanical Switches Based on Silicon Carbide Nanowires
We report experimental demonstrations of electrostatically actuated, contact-mode nanoelectromechanical switches based on very thin silicon carbide (SiC) nanowires (NWs). These NWs are lithographically patterned from a 50 nm thick SiC layer heteroepitaxially grown on single-crystal silicon (Si). Sev...
Gespeichert in:
Veröffentlicht in: | Nano letters 2010-08, Vol.10 (8), p.2891-2896 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2896 |
---|---|
container_issue | 8 |
container_start_page | 2891 |
container_title | Nano letters |
container_volume | 10 |
creator | Feng, X. L Matheny, M. H Zorman, C. A Mehregany, M Roukes, M. L |
description | We report experimental demonstrations of electrostatically actuated, contact-mode nanoelectromechanical switches based on very thin silicon carbide (SiC) nanowires (NWs). These NWs are lithographically patterned from a 50 nm thick SiC layer heteroepitaxially grown on single-crystal silicon (Si). Several generic designs of in-plane electrostatic SiC NW switches have been realized, with NW widths as small as ∼20 nm and lateral switching gaps as narrow as ∼10 nm. Very low switch-on voltages are obtained, from a few volts down to ∼1 V level. Two-terminal, contact-mode “hot” switching with high on/off ratios (>102 or 103) has been demonstrated repeatedly for many devices. We find enhanced switching performance in bare SiC NWs, with lifetimes exceeding those based on metallized SiC NWs. |
doi_str_mv | 10.1021/nl1009734 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_748936883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>748936883</sourcerecordid><originalsourceid>FETCH-LOGICAL-a445t-a01d4dd7f7bb0009bdff5b06eb1cec17c045ff103217c95e0d122729642fe2873</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EolAY-AMoC0IMAdtx4mSEii-pwFBgjRz7TF25cbETVfx7XLW0C9OdTs_dvXoQOiP4mmBKblpLMK54xvbQEckznBZVRfe3fckG6DiEGY5QluNDNKA4TgtMjtDL2C2TT2c78QXJq2gdWJCdd3OQU9EaKWwyWZpOTiEkdyKASlybTIw1MtaR8I1R672l8RBO0IEWNsDppg7Rx8P9--gpHb89Po9ux6lgLO9SgYliSnHNm2YVqlFa5w0uoCESJOESs1xrgjMa-yoHrAilnFYFoxpoybMhulzfXXj33UPo6rkJEqwVLbg-1JyVVVaUZRbJqzUpvQvBg64X3syF_6kJrlfy6q28yJ5vrvbNHNSW_LMVgYsNIEI0o71opQk7LouRS8p3nJChnrnet1HGPw9_AelFgcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>748936883</pqid></control><display><type>article</type><title>Low Voltage Nanoelectromechanical Switches Based on Silicon Carbide Nanowires</title><source>ACS Publications</source><creator>Feng, X. L ; Matheny, M. H ; Zorman, C. A ; Mehregany, M ; Roukes, M. L</creator><creatorcontrib>Feng, X. L ; Matheny, M. H ; Zorman, C. A ; Mehregany, M ; Roukes, M. L</creatorcontrib><description>We report experimental demonstrations of electrostatically actuated, contact-mode nanoelectromechanical switches based on very thin silicon carbide (SiC) nanowires (NWs). These NWs are lithographically patterned from a 50 nm thick SiC layer heteroepitaxially grown on single-crystal silicon (Si). Several generic designs of in-plane electrostatic SiC NW switches have been realized, with NW widths as small as ∼20 nm and lateral switching gaps as narrow as ∼10 nm. Very low switch-on voltages are obtained, from a few volts down to ∼1 V level. Two-terminal, contact-mode “hot” switching with high on/off ratios (>102 or 103) has been demonstrated repeatedly for many devices. We find enhanced switching performance in bare SiC NWs, with lifetimes exceeding those based on metallized SiC NWs.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl1009734</identifier><identifier>PMID: 20698601</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Materials science ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Physics ; Quantum wires</subject><ispartof>Nano letters, 2010-08, Vol.10 (8), p.2891-2896</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a445t-a01d4dd7f7bb0009bdff5b06eb1cec17c045ff103217c95e0d122729642fe2873</citedby><cites>FETCH-LOGICAL-a445t-a01d4dd7f7bb0009bdff5b06eb1cec17c045ff103217c95e0d122729642fe2873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl1009734$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl1009734$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23103827$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20698601$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, X. L</creatorcontrib><creatorcontrib>Matheny, M. H</creatorcontrib><creatorcontrib>Zorman, C. A</creatorcontrib><creatorcontrib>Mehregany, M</creatorcontrib><creatorcontrib>Roukes, M. L</creatorcontrib><title>Low Voltage Nanoelectromechanical Switches Based on Silicon Carbide Nanowires</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We report experimental demonstrations of electrostatically actuated, contact-mode nanoelectromechanical switches based on very thin silicon carbide (SiC) nanowires (NWs). These NWs are lithographically patterned from a 50 nm thick SiC layer heteroepitaxially grown on single-crystal silicon (Si). Several generic designs of in-plane electrostatic SiC NW switches have been realized, with NW widths as small as ∼20 nm and lateral switching gaps as narrow as ∼10 nm. Very low switch-on voltages are obtained, from a few volts down to ∼1 V level. Two-terminal, contact-mode “hot” switching with high on/off ratios (>102 or 103) has been demonstrated repeatedly for many devices. We find enhanced switching performance in bare SiC NWs, with lifetimes exceeding those based on metallized SiC NWs.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Materials science</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Physics</subject><subject>Quantum wires</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNptkD1PwzAQhi0EolAY-AMoC0IMAdtx4mSEii-pwFBgjRz7TF25cbETVfx7XLW0C9OdTs_dvXoQOiP4mmBKblpLMK54xvbQEckznBZVRfe3fckG6DiEGY5QluNDNKA4TgtMjtDL2C2TT2c78QXJq2gdWJCdd3OQU9EaKWwyWZpOTiEkdyKASlybTIw1MtaR8I1R672l8RBO0IEWNsDppg7Rx8P9--gpHb89Po9ux6lgLO9SgYliSnHNm2YVqlFa5w0uoCESJOESs1xrgjMa-yoHrAilnFYFoxpoybMhulzfXXj33UPo6rkJEqwVLbg-1JyVVVaUZRbJqzUpvQvBg64X3syF_6kJrlfy6q28yJ5vrvbNHNSW_LMVgYsNIEI0o71opQk7LouRS8p3nJChnrnet1HGPw9_AelFgcA</recordid><startdate>20100811</startdate><enddate>20100811</enddate><creator>Feng, X. L</creator><creator>Matheny, M. H</creator><creator>Zorman, C. A</creator><creator>Mehregany, M</creator><creator>Roukes, M. L</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100811</creationdate><title>Low Voltage Nanoelectromechanical Switches Based on Silicon Carbide Nanowires</title><author>Feng, X. L ; Matheny, M. H ; Zorman, C. A ; Mehregany, M ; Roukes, M. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a445t-a01d4dd7f7bb0009bdff5b06eb1cec17c045ff103217c95e0d122729642fe2873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Materials science</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Physics</topic><topic>Quantum wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, X. L</creatorcontrib><creatorcontrib>Matheny, M. H</creatorcontrib><creatorcontrib>Zorman, C. A</creatorcontrib><creatorcontrib>Mehregany, M</creatorcontrib><creatorcontrib>Roukes, M. L</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, X. L</au><au>Matheny, M. H</au><au>Zorman, C. A</au><au>Mehregany, M</au><au>Roukes, M. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Voltage Nanoelectromechanical Switches Based on Silicon Carbide Nanowires</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2010-08-11</date><risdate>2010</risdate><volume>10</volume><issue>8</issue><spage>2891</spage><epage>2896</epage><pages>2891-2896</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We report experimental demonstrations of electrostatically actuated, contact-mode nanoelectromechanical switches based on very thin silicon carbide (SiC) nanowires (NWs). These NWs are lithographically patterned from a 50 nm thick SiC layer heteroepitaxially grown on single-crystal silicon (Si). Several generic designs of in-plane electrostatic SiC NW switches have been realized, with NW widths as small as ∼20 nm and lateral switching gaps as narrow as ∼10 nm. Very low switch-on voltages are obtained, from a few volts down to ∼1 V level. Two-terminal, contact-mode “hot” switching with high on/off ratios (>102 or 103) has been demonstrated repeatedly for many devices. We find enhanced switching performance in bare SiC NWs, with lifetimes exceeding those based on metallized SiC NWs.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20698601</pmid><doi>10.1021/nl1009734</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2010-08, Vol.10 (8), p.2891-2896 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_748936883 |
source | ACS Publications |
subjects | Cross-disciplinary physics: materials science rheology Exact sciences and technology Materials science Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Physics Quantum wires |
title | Low Voltage Nanoelectromechanical Switches Based on Silicon Carbide Nanowires |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T03%3A21%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Voltage%20Nanoelectromechanical%20Switches%20Based%20on%20Silicon%20Carbide%20Nanowires&rft.jtitle=Nano%20letters&rft.au=Feng,%20X.%20L&rft.date=2010-08-11&rft.volume=10&rft.issue=8&rft.spage=2891&rft.epage=2896&rft.pages=2891-2896&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl1009734&rft_dat=%3Cproquest_cross%3E748936883%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=748936883&rft_id=info:pmid/20698601&rfr_iscdi=true |