Quantification in Gas Chromatography: Prediction of Flame Ionization Detector Response Factors from Combustion Enthalpies and Molecular Structures

In a previous report, we validated the use of a database that compiled the relative response factors of flavor and fragrance compounds under standard GC conditions for a flame ionization detector. Here we investigate the prediction of unknown response factors from the molecular structure by using co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2010-08, Vol.82 (15), p.6457-6462
Hauptverfasser: de Saint Laumer, Jean-Yves, Cicchetti, Esmeralda, Merle, Philippe, Egger, Jonathan, Chaintreau, Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a previous report, we validated the use of a database that compiled the relative response factors of flavor and fragrance compounds under standard GC conditions for a flame ionization detector. Here we investigate the prediction of unknown response factors from the molecular structure by using combustion enthalpies. In a first step, this enthalpy was well-predicted with either ab initio calculation or multiple linear regression based on the molecular formula. In a second step, good correlation was observed between these combustion enthalpies and experimental relative response factors, and so the response factors were predictable from only the molecular formula. With a database of 351 compounds, about 60% of them exhibited a difference of less than 5% between the predicted and experimental relative response factors and about 80% exhibited a difference of less than 10%.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac1006574