Appearance of tyrosine hydroxylase, aromatic amino-acid decarboxylase, dopamine beta-hydroxylase and phenylethanolamine N-methyltransferase during the ontogenesis of the adrenal medulla. An immunohistochemical study in the rat
The cellular localization of the enzymes tyrosine hydroxylase (TH), aromatic amino-acid decarboxylase (or dopa decarboxylase, DDC), dopamine beta-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT) in the adrenal medulla of adult rats and rat fetuses (14th, 17th, 18th, 19th and 21st...
Gespeichert in:
Veröffentlicht in: | Cell and tissue research 1979-08, Vol.200 (1), p.1-13 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The cellular localization of the enzymes tyrosine hydroxylase (TH), aromatic amino-acid decarboxylase (or dopa decarboxylase, DDC), dopamine beta-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT) in the adrenal medulla of adult rats and rat fetuses (14th, 17th, 18th, 19th and 21st day) was examined. In the prenatal stages the medullary blastema and an adjacent part of the primitive sympathetic trunk were also investigated. Tissues were fixed in ice-cold 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.2). Cryostat sections (10 micron in thickness) were stained by the indirect immunofluorescence technique. Rabbit antibodies to TH (isolated from human pheochromocytoma), DDC, DBH and PNMT (the latter three isolated from bovine adrenal medulla) were used. Sections incubated with serum of non-immunized rabbits were used as controls. In the adult adrenal medulla, two cell types can be distinguished. One cell type contains only TH, DDC and DBH. The other cell type contains PNMT in addition. It is concluded that these cells correspond to the noradrenaline-(NA-) and adrenaline- (A-)storing cells respectively. In all prenatal stages TH, DDC and DBH are found in the primitive sympathetic trunk, in the medullary blastema, and in the medullary cells which have migrated into the cortical "anlage". PNMT is observed for the first time on the 18th day. Moreover, PNMT could only be demonstrated inside the adrenal gland. From these observations it is concluded that the capacity to synthesize NA is developed even before the "medullary" cells have reached the cortical "anlage". On the contrary, the capacity to synthesize A seems to be acquired only after this contact is established. The hypothesis is put forward that this phenomenon might indicate the induction of PNMT by glucocorticoids secreted by the fetal cortex. |
---|---|
ISSN: | 0302-766X 1432-0878 |
DOI: | 10.1007/BF00236882 |