Safety and availability of steam generator tubes affected by secondary side corrosion

The outside diameter stress corrosion cracking at tube support plates became the dominating ageing mechanism in steam generator tubes made of Inconel 600. A variety of maintenance approaches were developed and implemented world-wide to enable safe and reliable plant operation with affected tubes. De...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and design 1998-09, Vol.185 (1), p.11-21
Hauptverfasser: Dvoršek, T., Cizelj, L., Mavko, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The outside diameter stress corrosion cracking at tube support plates became the dominating ageing mechanism in steam generator tubes made of Inconel 600. A variety of maintenance approaches were developed and implemented world-wide to enable safe and reliable plant operation with affected tubes. Despite different philosophical and physical backgrounds involved, all applied approaches satisfy relevant regulatory requirements. The main goal followed in this paper is to quantify the degree of safety which is achieved through the implementation of selected maintenance approaches. A method is proposed which measures the operational safety and availability through three efficiency parameters: probability of steam generator tube rupture; predicted accidental leak rates through the defects in the tube bundle; and number of plugged tubes. An original probabilistic model quantifies the probability of tube rupture, while procedures available in literature were used to evaluate the accidental leak rates. A numerical example is based on data from the Krško NPP (PWR 623 MWe). The maintenance strategies analyzed are: (a) traditional defect depth (40%) plugging criterion; (b) alternate plugging criterion (bobbin coil voltage as defined by EPRI and US NRC); (c) combination of traditional and alternate plugging criteria; and (d) no plugging at all. Advantages of the defect specific approaches (b) and (c) over the traditional one (a) are clearly shown. The efficiency of the traditional approach (a) is shown to be comparable to the no plugging at all approach (d). Finally, a sensitivity analysis aimed at ranking of the input parameters is presented. Uncertain failure models are shown to be the major contributor to the scatter of obtained results.
ISSN:0029-5493
1872-759X
DOI:10.1016/S0029-5493(98)00228-3