Improvements to compressible Euler methods for low-Mach number flows

In the present study improvements to numerical algorithms for the solution of the compressible Euler equations at low Mach numbers are investigated. To solve flow problems for a wide range of Mach numbers, from the incompressible limit to supersonic speeds, preconditioning techniques are frequently...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in fluids 2000-09, Vol.34 (2), p.167-185
Hauptverfasser: Sabanca, Murat, Brenner, Gunther, Alemdaroğlu, Nafiz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present study improvements to numerical algorithms for the solution of the compressible Euler equations at low Mach numbers are investigated. To solve flow problems for a wide range of Mach numbers, from the incompressible limit to supersonic speeds, preconditioning techniques are frequently employed. On the other hand, one can achieve the same aim by using a suitably modified acoustic damping method. The solution algorithm presently under consideration is based on Roe's approximate Riemann solver [Roe PL. Approximate Riemann solvers, parameter vectors and difference schemes. Journal of Computational Physics 1981; 43: 357–372] for non‐structured meshes. The numerical flux functions are modified by using Turkel's preconditioning technique proposed by Viozat [Implicit upwind schemes for low Mach number compressible flows. INRIA, Rapport de Recherche No. 3084, January 1997] for compressible Euler equations and by using a modified acoustic damping of the stabilization term proposed in the present study. These methods allow the compressible Euler equations at low‐Mach number flows to be solved, and they are consistent in time. The efficiency and accuracy of the proposed modifications have been assessed by comparison with experimental data and other numerical results in the literature. Copyright © 2000 John Wiley & Sons, Ltd.
ISSN:0271-2091
1097-0363
DOI:10.1002/1097-0363(20000930)34:2<167::AID-FLD53>3.0.CO;2-R