Relative Short-Range Forecast Impact from Aircraft, Profiler, Radiosonde, VAD, GPS-PW, METAR, and Mesonet Observations via the RUC Hourly Assimilation Cycle

An assessment is presented on the relative forecast impact on the performance of a numerical weather prediction model from eight different observation data types: aircraft, profiler, radiosonde, velocity azimuth display (VAD), GPS-derived precipitable water, aviation routine weather report (METAR; s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly weather review 2010-04, Vol.138 (4), p.1319-1343
Hauptverfasser: BENJAMIN, Stanley G, JAMISON, Brian D, MONINGER, William R, SAHM, Susan R, SCHWARTZ, Barry E, SCHLATTER, Thomas W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An assessment is presented on the relative forecast impact on the performance of a numerical weather prediction model from eight different observation data types: aircraft, profiler, radiosonde, velocity azimuth display (VAD), GPS-derived precipitable water, aviation routine weather report (METAR; surface), surface mesonet, and satellite-based atmospheric motion vectors. A series of observation sensitivity experiments was conducted using the Rapid Update Cycle (RUC) model/assimilation system in which various data sources were denied to assess the relative importance of the different data types for short-range (3–12 h) wind, temperature, and relative humidity forecasts at different vertical levels and near the surface. These experiments were conducted for two 10-day periods, one in November–December 2006 and one in August 2007. These experiments show positive short-range forecast impacts from most of the contributors to the heterogeneous observing system over the RUC domain. In particular, aircraft observations had the largest overall impact for forecasts initialized 3–6 h before 0000 or 1200 UTC, considered over the full depth (1000–100 hPa), followed by radiosonde observations, even though the latter are available only every 12 h. Profiler data (including at a hypothetical 8-km depth), GPS-precipitable water estimates, and surface observations also led to significant improvements in short-range forecast skill.
ISSN:0027-0644
1520-0493
DOI:10.1175/2009mwr3097.1