Finite element modelling of perturbed stellar systems

I formulate a general finite element method (FEM) for self-gravitating stellar systems. I split the configuration space to finite elements, and express the potential and density functions over each element in terms of their nodal values and suitable interpolating functions. General expressions are t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2010-05, Vol.404 (3), p.1519-1528
1. Verfasser: Jalali, Mir Abbas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:I formulate a general finite element method (FEM) for self-gravitating stellar systems. I split the configuration space to finite elements, and express the potential and density functions over each element in terms of their nodal values and suitable interpolating functions. General expressions are then introduced for the Hamiltonian and phase-space distribution functions of the stars that visit a given element. Using the weighted residual form of Poisson's equation, I derive the Galerkin projection of the perturbed collisionless Boltzmann equation, and assemble the global evolutionary equations of nodal distribution functions. The FEM is highly adaptable to all kinds of potential and density profiles, and it can deal with density clumps and initially non-axisymmetric systems. I use ring elements of non-uniform widths, choose linear and quadratic interpolation functions in the radial direction, and apply the FEM to the stability analysis of the cutout Mestel disc. I also integrate the forced evolutionary equations and investigate the disturbances of a stable stellar disc due to the gravitational field of a distant satellite galaxy. The performance of the FEM and its prospects are discussed.
ISSN:0035-8711
1365-2966
DOI:10.1111/j.1365-2966.2010.16365.x