Low temperature surface passivation for silicon solar cells

Surface passivation at low processing temperatures becomes an important topic for cheap solar cell processing. In this study, we first give a broad overview of the state of the art in this field. Subsequently, the results of a series of mutually related experiments are given about surface passivatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 1996-08, Vol.40 (4), p.297-345
Hauptverfasser: Leguijt, C., Lölgen, P., Eikelboom, J.A., Weeber, A.W., Schuurmans, F.M., Sinke, W.C., Alkemade, P.F.A., Sarro, P.M., Marée, C.H.M., Verhoef, L.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surface passivation at low processing temperatures becomes an important topic for cheap solar cell processing. In this study, we first give a broad overview of the state of the art in this field. Subsequently, the results of a series of mutually related experiments are given about surface passivation with direct Plasma Enhanced Chemical Vapour Deposition (PECVD) of silicon oxide (Si-oxide) and silicon nitride (Si-nitride). Results of harmonically modulated microwave reflection experiments are combined with Capacitance-Voltage measurements on Metal-Insulator-Silicon structures (CV-MIS), accelerated degradation tests and with Secondary Ion Mass Spectrometry (SIMS) and Elastic Recoil Detection (ERD) measurements of hydrogen and deuterium concentrations in the passivating layers. A large positive fixed charge density at the interface is very important for the achieved low surface recombination velocities S. The density of interface states D it is strongly reduced by post deposition anneals. The lowest values of S are obtained with PECVD of Si-nitride. The surface passivation obtained with Si-nitride is stable under typical operating conditions for solar cells. By using deuterium as a tracer it is shown that hydrogen in the ambient of the post deposition anneal does not play a role in the passivation by Si-nitride. Finally, the results of CV-MIS measurements (Capacitance-Voltage measurements on Metal-Insulator-Silicon structures) on deposited Si-nitride layers are used to calculate effective recombination velocities as a function of the injection level at the surface, using a model that is able to predict the surface recombination velocity S at thermally oxidized silicon surfaces. These results are not in agreement with the measured increase of S at low injection levels.
ISSN:0927-0248
1879-3398
DOI:10.1016/0927-0248(95)00155-7