Analytical modeling of flashing-induced instabilities in a natural circulation cooled boiling water reactor
A dynamic model for natural circulation boiling water reactors (BWRs) under low-pressure conditions is developed. The motivation for this theoretical research is the concern about the stability of natural circulation BWRs during the low-pressure reactor start-up phase. There is experimental and theo...
Gespeichert in:
Veröffentlicht in: | Nuclear engineering and design 2002-06, Vol.215 (1), p.87-98 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A dynamic model for natural circulation boiling water reactors (BWRs) under low-pressure conditions is developed. The motivation for this theoretical research is the concern about the stability of natural circulation BWRs during the low-pressure reactor start-up phase. There is experimental and theoretical evidence for the occurrence of void flashing in the unheated riser under these conditions. This flashing effect is included in the differential (homogeneous equilibrium) equations for two-phase flow. The differential equations were integrated over axial two-phase nodes, to derive a nodal time-domain model. The dynamic behavior of the interface between the one and two-phase regions is approximated with a linearized model. All model equations are presented in a dimensionless form. As an example the stability characteristics of the Dutch Dodewaard reactor at low pressure are determined. |
---|---|
ISSN: | 0029-5493 1872-759X |
DOI: | 10.1016/S0029-5493(02)00043-2 |