Crystal Structures of IL-2-inducible T cell Kinase Complexed with Inhibitors: Insights into Rational Drug Design and Activity Regulation
IL-2-inducible T cell kinase plays an essential role in T cell receptor signaling and is considered a drug target for the treatment of Th2-mediated inflammatory diseases. By applying high-throughput protein engineering and crystallization, we have determined the X-ray crystal structures of IL-2-indu...
Gespeichert in:
Veröffentlicht in: | Chemical biology & drug design 2010-08, Vol.76 (2), p.154-163 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | IL-2-inducible T cell kinase plays an essential role in T cell receptor signaling and is considered a drug target for the treatment of Th2-mediated inflammatory diseases. By applying high-throughput protein engineering and crystallization, we have determined the X-ray crystal structures of IL-2-inducible T cell kinase in complex with its selective inhibitor BMS-509744 and the broad-spectrum kinase inhibitors sunitinib and RO5191614. Sunitinib uniquely stabilizes IL-2-inducible T cell kinase in the helix C-in conformation by inducing side chain conformational changes in the ATP-binding site. This preference of sunitinib to bind to an active kinase conformation is reflective of its broad-spectrum kinase activity. BMS-509744 uniquely stabilizes the activation loop in a substrate-blocking inactive conformation, indicating that structural changes described for Src family kinases are also involved in the regulation of IL-2-inducible T cell kinase activity. The observed BMS-509744 binding mode allows rationalization of structure-activity relationships reported for this inhibitor class and facilitates further structure-based drug design. Sequence-based analysis of this binding mode provides guidance for the rational design of inhibitor selectivity. |
---|---|
ISSN: | 1747-0277 1747-0285 |
DOI: | 10.1111/j.1747-0285.2010.00993.x |