Experimental study on liquid/solid phase change for cold energy storage of Liquefied Natural Gas (LNG) refrigerated vehicle
The present paper addresses an experimental investigation of the cold storage with liquid/solid phase change of water based on the cold energy recovery of Liquefied Natural Gas (LNG) refrigerated vehicles. Water as phase change material (PCM) was solidified outside the heat transfer tubes that were...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2010-05, Vol.35 (5), p.1927-1935 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present paper addresses an experimental investigation of the cold storage with liquid/solid phase change of water based on the cold energy recovery of Liquefied Natural Gas (LNG) refrigerated vehicles. Water as phase change material (PCM) was solidified outside the heat transfer tubes that were internally cooled by cryogenic nitrogen gas substituting cryogenic natural gas. The ice layer profiles were recorded in different cross-sections observed by digital cameras. The temperatures of cryogenic gas, tube wall and bulk region were measured by embedded thermocouples continuously. The results of the smooth tube experiments and the thermal resistance analysis prove that the main thermal resistance occurs in the gaseous heat transfer fluid (HTF) inner the tube. The enhancement of the inner heat transfer is achieved by adding wave-like internal fins. Besides, the results show that the ice layer not only increases in radial direction but also propagates in axial direction. It distributes in parabolic shape along the tube length due to the parabolic axial distribution of the tube wall temperatures. This investigation provides valuable references for the design and optimization of the cold energy storage unit of LNG refrigerated vehicles and for the numerical study on the unsteady two-dimensional conjugated heat transfer with phase change. |
---|---|
ISSN: | 0360-5442 |
DOI: | 10.1016/j.energy.2010.01.006 |