Stress intensity factor evaluation using singular finite elements

The classical theory of linear elastic fracture mechanics proposes that the stress and energy field near a crack tip can be accurately evaluated by determining the stress intensity factors. Several recent investigations, however, have demonstrated the previously unrecognized importance of the higher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering fracture mechanics 1982, Vol.16 (4), p.557-568
Hauptverfasser: Valla, Leo B., Lehnhoff, Terry F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The classical theory of linear elastic fracture mechanics proposes that the stress and energy field near a crack tip can be accurately evaluated by determining the stress intensity factors. Several recent investigations, however, have demonstrated the previously unrecognized importance of the higher-order terms also present in the series eigenfunction representation of the near-tip crack environment. The finite element method has been shown to quite effectively yield these higher-order coefficients, with the method previously utilized only to determine the first term of the series expansion (the stress intensity factor). By numerically evaluating the higher-order coefficients for several finite geometries, the near-tip environment has been shown to be much more sensitive to variations in these terms, than previously believed. This is a phenomenon that no accurate crack propagation study, regardless of specific propagation theory, should disregard without careful consideration, particularly because of the inherent accumulated error in any incremental propagation study.
ISSN:0013-7944
1873-7315
DOI:10.1016/0013-7944(82)90133-3