Nondestructive, in-line characterization of device performance parameters of shallow junction processes

Deep submicron transistor source–drain structures require a challenging combination of ultrashallow depth and low series resistance. Because these factors affect off-state leakage, drive current, and threshold voltage, it is important to maintain tight control of junction depth and depth uniformity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 2002-03, Vol.20 (2), p.640-643
Hauptverfasser: Kluth, G. Jonathan, En, William G., Borden, P., Bechtler, L., Nijmeijer, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 643
container_issue 2
container_start_page 640
container_title Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures
container_volume 20
creator Kluth, G. Jonathan
En, William G.
Borden, P.
Bechtler, L.
Nijmeijer, R.
description Deep submicron transistor source–drain structures require a challenging combination of ultrashallow depth and low series resistance. Because these factors affect off-state leakage, drive current, and threshold voltage, it is important to maintain tight control of junction depth and depth uniformity over the full wafer diameter. A method for nondestructive, small area, high throughput characterization of ultrashallow junctions, called Carrier Illumination™ (CI) has recently been developed. It offers the potential for in-line monitoring of critical parameters associated with shallow junction processes. The CI method measures the active doping depth of shallow implants such as source/drain extensions on product wafers. Recent results demonstrate the ability of CI measurements to indicate junction depth variation due to implant dose, energy, and annealing temperature and time. This article presents correlation of in-line CI junction depth measurements to end-of-the line electrical properties of n metal–oxide–semiconductor (MOS) and pMOS transistors and test structures. This indicates that it is possible to maintain process control of the effective channel length and threshold voltage at front-end process steps, well before electrical probing is possible.
doi_str_mv 10.1116/1.1463071
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746169060</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>746169060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c329t-82c63c8eb7430ab33c5e1ed4c677a3ca7e537183e141728fe708ed570ea825f63</originalsourceid><addsrcrecordid>eNqd0E1PwzAMBuAIgcQYHPgHvSEQHXHTJt0RTXxJE1xA4hZlrssytU1J2iH49XQfEndO9uGxLb-MnQOfAIC8gQmkUnAFB2wEWcLjPJPqkI24EmmcALwfs5MQVpxzmQkxYh_PrikodL7Hzq7pOrJNXNmGIlwab7Ajb39MZ10TuTIqaG2RopZ86Xxtmk0_qJoGFjYgLE1Vua9o1Te4HWq9QwqBwik7Kk0V6Gxfx-zt_u519hjPXx6eZrfzGEUy7eI8QSkwp4VKBTcLITAjoCJFqZQRaBRlQkEuCFJQSV6S4jkVmeJk8iQrpRizi93e4fJnPzymaxuQqso05PqgVSpBTrnkg7zcSfQuBE-lbr2tjf_WwPUmSw16n-Vgr3Y2oO22cfwPr53_g7otSvELkrKEcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>746169060</pqid></control><display><type>article</type><title>Nondestructive, in-line characterization of device performance parameters of shallow junction processes</title><source>AIP Journals Complete</source><creator>Kluth, G. Jonathan ; En, William G. ; Borden, P. ; Bechtler, L. ; Nijmeijer, R.</creator><creatorcontrib>Kluth, G. Jonathan ; En, William G. ; Borden, P. ; Bechtler, L. ; Nijmeijer, R.</creatorcontrib><description>Deep submicron transistor source–drain structures require a challenging combination of ultrashallow depth and low series resistance. Because these factors affect off-state leakage, drive current, and threshold voltage, it is important to maintain tight control of junction depth and depth uniformity over the full wafer diameter. A method for nondestructive, small area, high throughput characterization of ultrashallow junctions, called Carrier Illumination™ (CI) has recently been developed. It offers the potential for in-line monitoring of critical parameters associated with shallow junction processes. The CI method measures the active doping depth of shallow implants such as source/drain extensions on product wafers. Recent results demonstrate the ability of CI measurements to indicate junction depth variation due to implant dose, energy, and annealing temperature and time. This article presents correlation of in-line CI junction depth measurements to end-of-the line electrical properties of n metal–oxide–semiconductor (MOS) and pMOS transistors and test structures. This indicates that it is possible to maintain process control of the effective channel length and threshold voltage at front-end process steps, well before electrical probing is possible.</description><identifier>ISSN: 0734-211X</identifier><identifier>ISSN: 1071-1023</identifier><identifier>EISSN: 1520-8567</identifier><identifier>DOI: 10.1116/1.1463071</identifier><identifier>CODEN: JVTBD9</identifier><language>eng</language><subject>Correlation methods ; Electric resistance ; Leakage currents ; MOS devices ; Nondestructive examination ; Rapid thermal annealing ; Secondary ion mass spectrometry ; Semiconductor doping ; Signal to noise ratio ; Threshold voltage</subject><ispartof>Journal of Vacuum Science &amp; Technology B: Microelectronics and Nanometer Structures, 2002-03, Vol.20 (2), p.640-643</ispartof><rights>American Vacuum Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c329t-82c63c8eb7430ab33c5e1ed4c677a3ca7e537183e141728fe708ed570ea825f63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Kluth, G. Jonathan</creatorcontrib><creatorcontrib>En, William G.</creatorcontrib><creatorcontrib>Borden, P.</creatorcontrib><creatorcontrib>Bechtler, L.</creatorcontrib><creatorcontrib>Nijmeijer, R.</creatorcontrib><title>Nondestructive, in-line characterization of device performance parameters of shallow junction processes</title><title>Journal of Vacuum Science &amp; Technology B: Microelectronics and Nanometer Structures</title><description>Deep submicron transistor source–drain structures require a challenging combination of ultrashallow depth and low series resistance. Because these factors affect off-state leakage, drive current, and threshold voltage, it is important to maintain tight control of junction depth and depth uniformity over the full wafer diameter. A method for nondestructive, small area, high throughput characterization of ultrashallow junctions, called Carrier Illumination™ (CI) has recently been developed. It offers the potential for in-line monitoring of critical parameters associated with shallow junction processes. The CI method measures the active doping depth of shallow implants such as source/drain extensions on product wafers. Recent results demonstrate the ability of CI measurements to indicate junction depth variation due to implant dose, energy, and annealing temperature and time. This article presents correlation of in-line CI junction depth measurements to end-of-the line electrical properties of n metal–oxide–semiconductor (MOS) and pMOS transistors and test structures. This indicates that it is possible to maintain process control of the effective channel length and threshold voltage at front-end process steps, well before electrical probing is possible.</description><subject>Correlation methods</subject><subject>Electric resistance</subject><subject>Leakage currents</subject><subject>MOS devices</subject><subject>Nondestructive examination</subject><subject>Rapid thermal annealing</subject><subject>Secondary ion mass spectrometry</subject><subject>Semiconductor doping</subject><subject>Signal to noise ratio</subject><subject>Threshold voltage</subject><issn>0734-211X</issn><issn>1071-1023</issn><issn>1520-8567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqd0E1PwzAMBuAIgcQYHPgHvSEQHXHTJt0RTXxJE1xA4hZlrssytU1J2iH49XQfEndO9uGxLb-MnQOfAIC8gQmkUnAFB2wEWcLjPJPqkI24EmmcALwfs5MQVpxzmQkxYh_PrikodL7Hzq7pOrJNXNmGIlwab7Ajb39MZ10TuTIqaG2RopZ86Xxtmk0_qJoGFjYgLE1Vua9o1Te4HWq9QwqBwik7Kk0V6Gxfx-zt_u519hjPXx6eZrfzGEUy7eI8QSkwp4VKBTcLITAjoCJFqZQRaBRlQkEuCFJQSV6S4jkVmeJk8iQrpRizi93e4fJnPzymaxuQqso05PqgVSpBTrnkg7zcSfQuBE-lbr2tjf_WwPUmSw16n-Vgr3Y2oO22cfwPr53_g7otSvELkrKEcQ</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>Kluth, G. Jonathan</creator><creator>En, William G.</creator><creator>Borden, P.</creator><creator>Bechtler, L.</creator><creator>Nijmeijer, R.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>20020301</creationdate><title>Nondestructive, in-line characterization of device performance parameters of shallow junction processes</title><author>Kluth, G. Jonathan ; En, William G. ; Borden, P. ; Bechtler, L. ; Nijmeijer, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c329t-82c63c8eb7430ab33c5e1ed4c677a3ca7e537183e141728fe708ed570ea825f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Correlation methods</topic><topic>Electric resistance</topic><topic>Leakage currents</topic><topic>MOS devices</topic><topic>Nondestructive examination</topic><topic>Rapid thermal annealing</topic><topic>Secondary ion mass spectrometry</topic><topic>Semiconductor doping</topic><topic>Signal to noise ratio</topic><topic>Threshold voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Kluth, G. Jonathan</creatorcontrib><creatorcontrib>En, William G.</creatorcontrib><creatorcontrib>Borden, P.</creatorcontrib><creatorcontrib>Bechtler, L.</creatorcontrib><creatorcontrib>Nijmeijer, R.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Journal of Vacuum Science &amp; Technology B: Microelectronics and Nanometer Structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kluth, G. Jonathan</au><au>En, William G.</au><au>Borden, P.</au><au>Bechtler, L.</au><au>Nijmeijer, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nondestructive, in-line characterization of device performance parameters of shallow junction processes</atitle><jtitle>Journal of Vacuum Science &amp; Technology B: Microelectronics and Nanometer Structures</jtitle><date>2002-03-01</date><risdate>2002</risdate><volume>20</volume><issue>2</issue><spage>640</spage><epage>643</epage><pages>640-643</pages><issn>0734-211X</issn><issn>1071-1023</issn><eissn>1520-8567</eissn><coden>JVTBD9</coden><abstract>Deep submicron transistor source–drain structures require a challenging combination of ultrashallow depth and low series resistance. Because these factors affect off-state leakage, drive current, and threshold voltage, it is important to maintain tight control of junction depth and depth uniformity over the full wafer diameter. A method for nondestructive, small area, high throughput characterization of ultrashallow junctions, called Carrier Illumination™ (CI) has recently been developed. It offers the potential for in-line monitoring of critical parameters associated with shallow junction processes. The CI method measures the active doping depth of shallow implants such as source/drain extensions on product wafers. Recent results demonstrate the ability of CI measurements to indicate junction depth variation due to implant dose, energy, and annealing temperature and time. This article presents correlation of in-line CI junction depth measurements to end-of-the line electrical properties of n metal–oxide–semiconductor (MOS) and pMOS transistors and test structures. This indicates that it is possible to maintain process control of the effective channel length and threshold voltage at front-end process steps, well before electrical probing is possible.</abstract><doi>10.1116/1.1463071</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0734-211X
ispartof Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2002-03, Vol.20 (2), p.640-643
issn 0734-211X
1071-1023
1520-8567
language eng
recordid cdi_proquest_miscellaneous_746169060
source AIP Journals Complete
subjects Correlation methods
Electric resistance
Leakage currents
MOS devices
Nondestructive examination
Rapid thermal annealing
Secondary ion mass spectrometry
Semiconductor doping
Signal to noise ratio
Threshold voltage
title Nondestructive, in-line characterization of device performance parameters of shallow junction processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nondestructive,%20in-line%20characterization%20of%20device%20performance%20parameters%20of%20shallow%20junction%20processes&rft.jtitle=Journal%20of%20Vacuum%20Science%20&%20Technology%20B:%20Microelectronics%20and%20Nanometer%20Structures&rft.au=Kluth,%20G.%20Jonathan&rft.date=2002-03-01&rft.volume=20&rft.issue=2&rft.spage=640&rft.epage=643&rft.pages=640-643&rft.issn=0734-211X&rft.eissn=1520-8567&rft.coden=JVTBD9&rft_id=info:doi/10.1116/1.1463071&rft_dat=%3Cproquest_cross%3E746169060%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=746169060&rft_id=info:pmid/&rfr_iscdi=true