Dynamics and control of variable-geometry truss structures
Variable-geometry truss structures are likely to be used extensively in the future for in-orbit space construction. This paper considers dynamics formulation and vibration control of such structures. The truss system is modelled as a collection of sub-structures consisting of truss booms, prismatic...
Gespeichert in:
Veröffentlicht in: | Acta astronautica 1999-12, Vol.45 (12), p.717-728 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Variable-geometry truss structures are likely to be used extensively in the future for in-orbit space construction. This paper considers dynamics formulation and vibration control of such structures. The truss system is modelled as a collection of sub-structures consisting of truss booms, prismatic actuator elements, and in some cases a manipulator at the end. Each truss boom is treated as a separate ‘link’ and its flexibility is modelled using the finite element method. Equations of motion for individual sub-structures are obtained which are then assembled. The non-working constraint forces are eliminated to obtain the equations governing the constrained dynamics of the entire system. For vibration control, the singular perturbation method is employed to construct two reduced-order models, for quasi-static motion and for modal co-ordinates, respectively. Computed torque with PD control is applied to maintain the quasi-static motion, while an optimal LQR method is used for vibration control. Typical simulation results are presented for the planar case. |
---|---|
ISSN: | 0094-5765 1879-2030 |
DOI: | 10.1016/S0094-5765(99)00125-3 |