Competitive and non-competitive adsorption/desorption of paraquat, diquat and difenzoquat in vineyard-devoted soils
Mobility of agrochemicals in soils plays an important role in the fate and transport of contaminants in the environment. Competitive and non-competitive sorption experiments of three ammonium quaternary herbicides (paraquat, diquat and difenzoquat) onto eight vineyard soils was measured in batch exp...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2010-06, Vol.178 (1), p.194-201 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Mobility of agrochemicals in soils plays an important role in the fate and transport of contaminants in the environment. Competitive and non-competitive sorption experiments of three ammonium quaternary herbicides (paraquat, diquat and difenzoquat) onto eight vineyard soils was measured in batch experiments. Non-competitive experiments show that paraquat (PQ) is the most strongly adsorbed (70–97% of added PQ) followed by diquat (DQ) and difenzoquat (DFQ). The best fits were obtained with the Freundlich equation. In competitive experiments with variable mole ratios, it was found a large influence between the divalent cationic herbicides PQ and DQ, and between them and the monovalent herbicide DFQ, but DFQ did only show a scarce influence on PQ and DQ sorption. Desorption of herbicides into CaCl
2 showed very low values: around 11, 19 and 31% for, respectively, PQ, DQ and DFQ. In order to assess the ability of herbicides to displace others, desorption experiments were carried out by replacing Cl
2Ca by any of the other two herbicides. In this case, the highest percentage of desorption was obtained when DFQ was desorbed with PQ (>72%) and DQ (>73%), but also when PQ was used to desorb DQ (100%) and vice versa (100%). |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/j.jhazmat.2010.01.063 |