Factors driving pathogenicity vs. prevalence of amphibian panzootic chytridiomycosis in Iberia
Ecology Letters (2010) 13: 372-382 Amphibian chytridiomycosis is a disease caused by the fungus Batrachochytrium dendrobatidis (Bd). Whether Bd is a new emerging pathogen (the novel pathogen hypothesis; NPH) or whether environmental changes are exacerbating the host-pathogen dynamic (the endemic pat...
Gespeichert in:
Veröffentlicht in: | Ecology letters 2010-03, Vol.13 (3), p.372-382 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ecology Letters (2010) 13: 372-382 Amphibian chytridiomycosis is a disease caused by the fungus Batrachochytrium dendrobatidis (Bd). Whether Bd is a new emerging pathogen (the novel pathogen hypothesis; NPH) or whether environmental changes are exacerbating the host-pathogen dynamic (the endemic pathogen hypothesis; EPH) is debated. To disentangle these hypotheses we map the distribution of Bd and chytridiomycosis across the Iberian Peninsula centred on the first European outbreak site. We find that the infection-free state is the norm across both sample sites and individuals. To analyse this dataset, we use Bayesian zero-inflated binomial models to test whether environmental variables can account for heterogeneity in both the presence and prevalence of Bd, and heterogeneity in the occurrence of the disease, chytridiomycosis. We also search for signatures of Bd-spread within Iberia using genotyping. We show (1) no evidence for any relationship between the presence of Bd and environmental variables, (2) a weak relationship between environmental variables and the conditional prevalence of infection, (3) stage-dependent heterogeneity in the infection risk, (4) a strong association between altitude and chytridiomycosis, (5) multiple Iberian genotypes and (6) recent introduction and spread of a single genotype of Bd in the Pyrenees. We conclude that the NPH is consistent with the emergence of Bd in Iberia. However, epizootic forcing of infection is tied to location and shaped by both biotic and abiotic variables. Therefore, the population-level consequences of disease introduction are explained by EPH-like processes. This study demonstrates the power of combining surveillance and molecular data to ascertain the drivers of new emerging infections diseases. |
---|---|
ISSN: | 1461-023X 1461-0248 |
DOI: | 10.1111/j.1461-0248.2009.01434.x |