Cutting force prediction of sculptured surface ball-end milling using Z-map

The cutting force in ball-end milling of sculptured surfaces is calculated. In sculptured surface machining, a simple method to determine the cutter contact area is necessary since cutting geometry is complicated and cutter contact area changes continuously. In this study, the cutter contact area is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine tools & manufacture 2000, Vol.40 (2), p.277-291
Hauptverfasser: Kim, G.M., Cho, P.J., Chu, C.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 291
container_issue 2
container_start_page 277
container_title International journal of machine tools & manufacture
container_volume 40
creator Kim, G.M.
Cho, P.J.
Chu, C.N.
description The cutting force in ball-end milling of sculptured surfaces is calculated. In sculptured surface machining, a simple method to determine the cutter contact area is necessary since cutting geometry is complicated and cutter contact area changes continuously. In this study, the cutter contact area is determined from the Z-map of the surface geometry and current cutter location. To determine cutting edge element engagement, the cutting edge elements are projected onto the cutter plane normal to the Z-axis and compared with the cutter contact area obtained from the Z-map. Cutting forces acting on the engaged cutting edge elements are calculated using an empirical method. Empirical cutting mechanism parameters are set as functions of cutting edge element position angle in order to consider the cutting action variation along the cutting edge. The relationship between undeformed chip geometry and the cutter feed inclination angle is also analyzed. The resultant cutting force is calculated by numerical integration of cutting forces acting on the engaged cutting edge elements. A series of experiments were performed to verify the proposed cutting force estimation model. It is shown that the proposed method predicts cutting force effectively for any geometry including sculptured surfaces with cusp marks and a hole.
doi_str_mv 10.1016/S0890-6955(99)00040-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746090499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0890695599000401</els_id><sourcerecordid>27249697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-eb02634eb1943ceb2ade7f655d203782ad48029dbe7c3ebe84f9dad5396567743</originalsourceid><addsrcrecordid>eNqFkEtLxDAQx4MouK5-BKEH8XGoJmkezUlk8YULHtSLl5CmU4lk25q0gt_e7AO96WWGGX7_GfghdEjwOcFEXDzhUuFcKM5PlTrDGDOcky00IaVUOSUSb6PJD7KL9mJ8TxApCzJBD7NxGFz7ljVdsJD1AWpnB9e1Wddk0Y6-H8a0y-IYGpOAynifQ1tnC-f9MjfGZX3NF6bfRzuN8REONn2KXm6un2d3-fzx9n52Nc8tE3zIocJUFAwqolhhoaKmBtkIzmuKC1mmkZWYqroCaQuooGSNqk3NCyW4kJIVU3SyvtuH7mOEOOiFixa8Ny10Y9SSCawwUyqRx3-SVFKmhJIJ5GvQhi7GAI3ug1uY8KUJ1kvJeiVZLw1qpfRKsiYpd7R5YKI1vgmmtS7-hinhpKQJu1xjkLR8Ogg6WgetTbID2EHXnfvn0TdY7JBt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27249697</pqid></control><display><type>article</type><title>Cutting force prediction of sculptured surface ball-end milling using Z-map</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kim, G.M. ; Cho, P.J. ; Chu, C.N.</creator><creatorcontrib>Kim, G.M. ; Cho, P.J. ; Chu, C.N.</creatorcontrib><description>The cutting force in ball-end milling of sculptured surfaces is calculated. In sculptured surface machining, a simple method to determine the cutter contact area is necessary since cutting geometry is complicated and cutter contact area changes continuously. In this study, the cutter contact area is determined from the Z-map of the surface geometry and current cutter location. To determine cutting edge element engagement, the cutting edge elements are projected onto the cutter plane normal to the Z-axis and compared with the cutter contact area obtained from the Z-map. Cutting forces acting on the engaged cutting edge elements are calculated using an empirical method. Empirical cutting mechanism parameters are set as functions of cutting edge element position angle in order to consider the cutting action variation along the cutting edge. The relationship between undeformed chip geometry and the cutter feed inclination angle is also analyzed. The resultant cutting force is calculated by numerical integration of cutting forces acting on the engaged cutting edge elements. A series of experiments were performed to verify the proposed cutting force estimation model. It is shown that the proposed method predicts cutting force effectively for any geometry including sculptured surfaces with cusp marks and a hole.</description><identifier>ISSN: 0890-6955</identifier><identifier>EISSN: 1879-2170</identifier><identifier>DOI: 10.1016/S0890-6955(99)00040-1</identifier><identifier>CODEN: IMTME3</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Ball-end mill ; Calculations ; Cutting ; Cutting force ; Cutting tools ; Exact sciences and technology ; Geometry ; Integration ; Loads (forces) ; Mathematical models ; Metals. Metallurgy ; Numerical methods ; Other machining methods ; Parameter estimation ; Production techniques ; Surfaces ; Z-map</subject><ispartof>International journal of machine tools &amp; manufacture, 2000, Vol.40 (2), p.277-291</ispartof><rights>1999 Elsevier Science Ltd</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-eb02634eb1943ceb2ade7f655d203782ad48029dbe7c3ebe84f9dad5396567743</citedby><cites>FETCH-LOGICAL-c465t-eb02634eb1943ceb2ade7f655d203782ad48029dbe7c3ebe84f9dad5396567743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0890-6955(99)00040-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1215182$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, G.M.</creatorcontrib><creatorcontrib>Cho, P.J.</creatorcontrib><creatorcontrib>Chu, C.N.</creatorcontrib><title>Cutting force prediction of sculptured surface ball-end milling using Z-map</title><title>International journal of machine tools &amp; manufacture</title><description>The cutting force in ball-end milling of sculptured surfaces is calculated. In sculptured surface machining, a simple method to determine the cutter contact area is necessary since cutting geometry is complicated and cutter contact area changes continuously. In this study, the cutter contact area is determined from the Z-map of the surface geometry and current cutter location. To determine cutting edge element engagement, the cutting edge elements are projected onto the cutter plane normal to the Z-axis and compared with the cutter contact area obtained from the Z-map. Cutting forces acting on the engaged cutting edge elements are calculated using an empirical method. Empirical cutting mechanism parameters are set as functions of cutting edge element position angle in order to consider the cutting action variation along the cutting edge. The relationship between undeformed chip geometry and the cutter feed inclination angle is also analyzed. The resultant cutting force is calculated by numerical integration of cutting forces acting on the engaged cutting edge elements. A series of experiments were performed to verify the proposed cutting force estimation model. It is shown that the proposed method predicts cutting force effectively for any geometry including sculptured surfaces with cusp marks and a hole.</description><subject>Applied sciences</subject><subject>Ball-end mill</subject><subject>Calculations</subject><subject>Cutting</subject><subject>Cutting force</subject><subject>Cutting tools</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Integration</subject><subject>Loads (forces)</subject><subject>Mathematical models</subject><subject>Metals. Metallurgy</subject><subject>Numerical methods</subject><subject>Other machining methods</subject><subject>Parameter estimation</subject><subject>Production techniques</subject><subject>Surfaces</subject><subject>Z-map</subject><issn>0890-6955</issn><issn>1879-2170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAQx4MouK5-BKEH8XGoJmkezUlk8YULHtSLl5CmU4lk25q0gt_e7AO96WWGGX7_GfghdEjwOcFEXDzhUuFcKM5PlTrDGDOcky00IaVUOSUSb6PJD7KL9mJ8TxApCzJBD7NxGFz7ljVdsJD1AWpnB9e1Wddk0Y6-H8a0y-IYGpOAynifQ1tnC-f9MjfGZX3NF6bfRzuN8REONn2KXm6un2d3-fzx9n52Nc8tE3zIocJUFAwqolhhoaKmBtkIzmuKC1mmkZWYqroCaQuooGSNqk3NCyW4kJIVU3SyvtuH7mOEOOiFixa8Ny10Y9SSCawwUyqRx3-SVFKmhJIJ5GvQhi7GAI3ug1uY8KUJ1kvJeiVZLw1qpfRKsiYpd7R5YKI1vgmmtS7-hinhpKQJu1xjkLR8Ogg6WgetTbID2EHXnfvn0TdY7JBt</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Kim, G.M.</creator><creator>Cho, P.J.</creator><creator>Chu, C.N.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>7TC</scope></search><sort><creationdate>2000</creationdate><title>Cutting force prediction of sculptured surface ball-end milling using Z-map</title><author>Kim, G.M. ; Cho, P.J. ; Chu, C.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-eb02634eb1943ceb2ade7f655d203782ad48029dbe7c3ebe84f9dad5396567743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Ball-end mill</topic><topic>Calculations</topic><topic>Cutting</topic><topic>Cutting force</topic><topic>Cutting tools</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Integration</topic><topic>Loads (forces)</topic><topic>Mathematical models</topic><topic>Metals. Metallurgy</topic><topic>Numerical methods</topic><topic>Other machining methods</topic><topic>Parameter estimation</topic><topic>Production techniques</topic><topic>Surfaces</topic><topic>Z-map</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, G.M.</creatorcontrib><creatorcontrib>Cho, P.J.</creatorcontrib><creatorcontrib>Chu, C.N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>International journal of machine tools &amp; manufacture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, G.M.</au><au>Cho, P.J.</au><au>Chu, C.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cutting force prediction of sculptured surface ball-end milling using Z-map</atitle><jtitle>International journal of machine tools &amp; manufacture</jtitle><date>2000</date><risdate>2000</risdate><volume>40</volume><issue>2</issue><spage>277</spage><epage>291</epage><pages>277-291</pages><issn>0890-6955</issn><eissn>1879-2170</eissn><coden>IMTME3</coden><abstract>The cutting force in ball-end milling of sculptured surfaces is calculated. In sculptured surface machining, a simple method to determine the cutter contact area is necessary since cutting geometry is complicated and cutter contact area changes continuously. In this study, the cutter contact area is determined from the Z-map of the surface geometry and current cutter location. To determine cutting edge element engagement, the cutting edge elements are projected onto the cutter plane normal to the Z-axis and compared with the cutter contact area obtained from the Z-map. Cutting forces acting on the engaged cutting edge elements are calculated using an empirical method. Empirical cutting mechanism parameters are set as functions of cutting edge element position angle in order to consider the cutting action variation along the cutting edge. The relationship between undeformed chip geometry and the cutter feed inclination angle is also analyzed. The resultant cutting force is calculated by numerical integration of cutting forces acting on the engaged cutting edge elements. A series of experiments were performed to verify the proposed cutting force estimation model. It is shown that the proposed method predicts cutting force effectively for any geometry including sculptured surfaces with cusp marks and a hole.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0890-6955(99)00040-1</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0890-6955
ispartof International journal of machine tools & manufacture, 2000, Vol.40 (2), p.277-291
issn 0890-6955
1879-2170
language eng
recordid cdi_proquest_miscellaneous_746090499
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
Ball-end mill
Calculations
Cutting
Cutting force
Cutting tools
Exact sciences and technology
Geometry
Integration
Loads (forces)
Mathematical models
Metals. Metallurgy
Numerical methods
Other machining methods
Parameter estimation
Production techniques
Surfaces
Z-map
title Cutting force prediction of sculptured surface ball-end milling using Z-map
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A35%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cutting%20force%20prediction%20of%20sculptured%20surface%20ball-end%20milling%20using%20Z-map&rft.jtitle=International%20journal%20of%20machine%20tools%20&%20manufacture&rft.au=Kim,%20G.M.&rft.date=2000&rft.volume=40&rft.issue=2&rft.spage=277&rft.epage=291&rft.pages=277-291&rft.issn=0890-6955&rft.eissn=1879-2170&rft.coden=IMTME3&rft_id=info:doi/10.1016/S0890-6955(99)00040-1&rft_dat=%3Cproquest_cross%3E27249697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27249697&rft_id=info:pmid/&rft_els_id=S0890695599000401&rfr_iscdi=true