Cutting force prediction of sculptured surface ball-end milling using Z-map
The cutting force in ball-end milling of sculptured surfaces is calculated. In sculptured surface machining, a simple method to determine the cutter contact area is necessary since cutting geometry is complicated and cutter contact area changes continuously. In this study, the cutter contact area is...
Gespeichert in:
Veröffentlicht in: | International journal of machine tools & manufacture 2000, Vol.40 (2), p.277-291 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 291 |
---|---|
container_issue | 2 |
container_start_page | 277 |
container_title | International journal of machine tools & manufacture |
container_volume | 40 |
creator | Kim, G.M. Cho, P.J. Chu, C.N. |
description | The cutting force in ball-end milling of sculptured surfaces is calculated. In sculptured surface machining, a simple method to determine the cutter contact area is necessary since cutting geometry is complicated and cutter contact area changes continuously. In this study, the cutter contact area is determined from the Z-map of the surface geometry and current cutter location. To determine cutting edge element engagement, the cutting edge elements are projected onto the cutter plane normal to the Z-axis and compared with the cutter contact area obtained from the Z-map. Cutting forces acting on the engaged cutting edge elements are calculated using an empirical method. Empirical cutting mechanism parameters are set as functions of cutting edge element position angle in order to consider the cutting action variation along the cutting edge. The relationship between undeformed chip geometry and the cutter feed inclination angle is also analyzed. The resultant cutting force is calculated by numerical integration of cutting forces acting on the engaged cutting edge elements. A series of experiments were performed to verify the proposed cutting force estimation model. It is shown that the proposed method predicts cutting force effectively for any geometry including sculptured surfaces with cusp marks and a hole. |
doi_str_mv | 10.1016/S0890-6955(99)00040-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_746090499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0890695599000401</els_id><sourcerecordid>27249697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-eb02634eb1943ceb2ade7f655d203782ad48029dbe7c3ebe84f9dad5396567743</originalsourceid><addsrcrecordid>eNqFkEtLxDAQx4MouK5-BKEH8XGoJmkezUlk8YULHtSLl5CmU4lk25q0gt_e7AO96WWGGX7_GfghdEjwOcFEXDzhUuFcKM5PlTrDGDOcky00IaVUOSUSb6PJD7KL9mJ8TxApCzJBD7NxGFz7ljVdsJD1AWpnB9e1Wddk0Y6-H8a0y-IYGpOAynifQ1tnC-f9MjfGZX3NF6bfRzuN8REONn2KXm6un2d3-fzx9n52Nc8tE3zIocJUFAwqolhhoaKmBtkIzmuKC1mmkZWYqroCaQuooGSNqk3NCyW4kJIVU3SyvtuH7mOEOOiFixa8Ny10Y9SSCawwUyqRx3-SVFKmhJIJ5GvQhi7GAI3ug1uY8KUJ1kvJeiVZLw1qpfRKsiYpd7R5YKI1vgmmtS7-hinhpKQJu1xjkLR8Ogg6WgetTbID2EHXnfvn0TdY7JBt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27249697</pqid></control><display><type>article</type><title>Cutting force prediction of sculptured surface ball-end milling using Z-map</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kim, G.M. ; Cho, P.J. ; Chu, C.N.</creator><creatorcontrib>Kim, G.M. ; Cho, P.J. ; Chu, C.N.</creatorcontrib><description>The cutting force in ball-end milling of sculptured surfaces is calculated. In sculptured surface machining, a simple method to determine the cutter contact area is necessary since cutting geometry is complicated and cutter contact area changes continuously. In this study, the cutter contact area is determined from the Z-map of the surface geometry and current cutter location. To determine cutting edge element engagement, the cutting edge elements are projected onto the cutter plane normal to the Z-axis and compared with the cutter contact area obtained from the Z-map. Cutting forces acting on the engaged cutting edge elements are calculated using an empirical method. Empirical cutting mechanism parameters are set as functions of cutting edge element position angle in order to consider the cutting action variation along the cutting edge. The relationship between undeformed chip geometry and the cutter feed inclination angle is also analyzed. The resultant cutting force is calculated by numerical integration of cutting forces acting on the engaged cutting edge elements. A series of experiments were performed to verify the proposed cutting force estimation model. It is shown that the proposed method predicts cutting force effectively for any geometry including sculptured surfaces with cusp marks and a hole.</description><identifier>ISSN: 0890-6955</identifier><identifier>EISSN: 1879-2170</identifier><identifier>DOI: 10.1016/S0890-6955(99)00040-1</identifier><identifier>CODEN: IMTME3</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Ball-end mill ; Calculations ; Cutting ; Cutting force ; Cutting tools ; Exact sciences and technology ; Geometry ; Integration ; Loads (forces) ; Mathematical models ; Metals. Metallurgy ; Numerical methods ; Other machining methods ; Parameter estimation ; Production techniques ; Surfaces ; Z-map</subject><ispartof>International journal of machine tools & manufacture, 2000, Vol.40 (2), p.277-291</ispartof><rights>1999 Elsevier Science Ltd</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-eb02634eb1943ceb2ade7f655d203782ad48029dbe7c3ebe84f9dad5396567743</citedby><cites>FETCH-LOGICAL-c465t-eb02634eb1943ceb2ade7f655d203782ad48029dbe7c3ebe84f9dad5396567743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0890-6955(99)00040-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,4024,27923,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1215182$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, G.M.</creatorcontrib><creatorcontrib>Cho, P.J.</creatorcontrib><creatorcontrib>Chu, C.N.</creatorcontrib><title>Cutting force prediction of sculptured surface ball-end milling using Z-map</title><title>International journal of machine tools & manufacture</title><description>The cutting force in ball-end milling of sculptured surfaces is calculated. In sculptured surface machining, a simple method to determine the cutter contact area is necessary since cutting geometry is complicated and cutter contact area changes continuously. In this study, the cutter contact area is determined from the Z-map of the surface geometry and current cutter location. To determine cutting edge element engagement, the cutting edge elements are projected onto the cutter plane normal to the Z-axis and compared with the cutter contact area obtained from the Z-map. Cutting forces acting on the engaged cutting edge elements are calculated using an empirical method. Empirical cutting mechanism parameters are set as functions of cutting edge element position angle in order to consider the cutting action variation along the cutting edge. The relationship between undeformed chip geometry and the cutter feed inclination angle is also analyzed. The resultant cutting force is calculated by numerical integration of cutting forces acting on the engaged cutting edge elements. A series of experiments were performed to verify the proposed cutting force estimation model. It is shown that the proposed method predicts cutting force effectively for any geometry including sculptured surfaces with cusp marks and a hole.</description><subject>Applied sciences</subject><subject>Ball-end mill</subject><subject>Calculations</subject><subject>Cutting</subject><subject>Cutting force</subject><subject>Cutting tools</subject><subject>Exact sciences and technology</subject><subject>Geometry</subject><subject>Integration</subject><subject>Loads (forces)</subject><subject>Mathematical models</subject><subject>Metals. Metallurgy</subject><subject>Numerical methods</subject><subject>Other machining methods</subject><subject>Parameter estimation</subject><subject>Production techniques</subject><subject>Surfaces</subject><subject>Z-map</subject><issn>0890-6955</issn><issn>1879-2170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAQx4MouK5-BKEH8XGoJmkezUlk8YULHtSLl5CmU4lk25q0gt_e7AO96WWGGX7_GfghdEjwOcFEXDzhUuFcKM5PlTrDGDOcky00IaVUOSUSb6PJD7KL9mJ8TxApCzJBD7NxGFz7ljVdsJD1AWpnB9e1Wddk0Y6-H8a0y-IYGpOAynifQ1tnC-f9MjfGZX3NF6bfRzuN8REONn2KXm6un2d3-fzx9n52Nc8tE3zIocJUFAwqolhhoaKmBtkIzmuKC1mmkZWYqroCaQuooGSNqk3NCyW4kJIVU3SyvtuH7mOEOOiFixa8Ny10Y9SSCawwUyqRx3-SVFKmhJIJ5GvQhi7GAI3ug1uY8KUJ1kvJeiVZLw1qpfRKsiYpd7R5YKI1vgmmtS7-hinhpKQJu1xjkLR8Ogg6WgetTbID2EHXnfvn0TdY7JBt</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Kim, G.M.</creator><creator>Cho, P.J.</creator><creator>Chu, C.N.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>7TC</scope></search><sort><creationdate>2000</creationdate><title>Cutting force prediction of sculptured surface ball-end milling using Z-map</title><author>Kim, G.M. ; Cho, P.J. ; Chu, C.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-eb02634eb1943ceb2ade7f655d203782ad48029dbe7c3ebe84f9dad5396567743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Ball-end mill</topic><topic>Calculations</topic><topic>Cutting</topic><topic>Cutting force</topic><topic>Cutting tools</topic><topic>Exact sciences and technology</topic><topic>Geometry</topic><topic>Integration</topic><topic>Loads (forces)</topic><topic>Mathematical models</topic><topic>Metals. Metallurgy</topic><topic>Numerical methods</topic><topic>Other machining methods</topic><topic>Parameter estimation</topic><topic>Production techniques</topic><topic>Surfaces</topic><topic>Z-map</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, G.M.</creatorcontrib><creatorcontrib>Cho, P.J.</creatorcontrib><creatorcontrib>Chu, C.N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>International journal of machine tools & manufacture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, G.M.</au><au>Cho, P.J.</au><au>Chu, C.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cutting force prediction of sculptured surface ball-end milling using Z-map</atitle><jtitle>International journal of machine tools & manufacture</jtitle><date>2000</date><risdate>2000</risdate><volume>40</volume><issue>2</issue><spage>277</spage><epage>291</epage><pages>277-291</pages><issn>0890-6955</issn><eissn>1879-2170</eissn><coden>IMTME3</coden><abstract>The cutting force in ball-end milling of sculptured surfaces is calculated. In sculptured surface machining, a simple method to determine the cutter contact area is necessary since cutting geometry is complicated and cutter contact area changes continuously. In this study, the cutter contact area is determined from the Z-map of the surface geometry and current cutter location. To determine cutting edge element engagement, the cutting edge elements are projected onto the cutter plane normal to the Z-axis and compared with the cutter contact area obtained from the Z-map. Cutting forces acting on the engaged cutting edge elements are calculated using an empirical method. Empirical cutting mechanism parameters are set as functions of cutting edge element position angle in order to consider the cutting action variation along the cutting edge. The relationship between undeformed chip geometry and the cutter feed inclination angle is also analyzed. The resultant cutting force is calculated by numerical integration of cutting forces acting on the engaged cutting edge elements. A series of experiments were performed to verify the proposed cutting force estimation model. It is shown that the proposed method predicts cutting force effectively for any geometry including sculptured surfaces with cusp marks and a hole.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0890-6955(99)00040-1</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0890-6955 |
ispartof | International journal of machine tools & manufacture, 2000, Vol.40 (2), p.277-291 |
issn | 0890-6955 1879-2170 |
language | eng |
recordid | cdi_proquest_miscellaneous_746090499 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences Ball-end mill Calculations Cutting Cutting force Cutting tools Exact sciences and technology Geometry Integration Loads (forces) Mathematical models Metals. Metallurgy Numerical methods Other machining methods Parameter estimation Production techniques Surfaces Z-map |
title | Cutting force prediction of sculptured surface ball-end milling using Z-map |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A35%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cutting%20force%20prediction%20of%20sculptured%20surface%20ball-end%20milling%20using%20Z-map&rft.jtitle=International%20journal%20of%20machine%20tools%20&%20manufacture&rft.au=Kim,%20G.M.&rft.date=2000&rft.volume=40&rft.issue=2&rft.spage=277&rft.epage=291&rft.pages=277-291&rft.issn=0890-6955&rft.eissn=1879-2170&rft.coden=IMTME3&rft_id=info:doi/10.1016/S0890-6955(99)00040-1&rft_dat=%3Cproquest_cross%3E27249697%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27249697&rft_id=info:pmid/&rft_els_id=S0890695599000401&rfr_iscdi=true |