Cutting force prediction of sculptured surface ball-end milling using Z-map

The cutting force in ball-end milling of sculptured surfaces is calculated. In sculptured surface machining, a simple method to determine the cutter contact area is necessary since cutting geometry is complicated and cutter contact area changes continuously. In this study, the cutter contact area is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of machine tools & manufacture 2000, Vol.40 (2), p.277-291
Hauptverfasser: Kim, G.M., Cho, P.J., Chu, C.N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The cutting force in ball-end milling of sculptured surfaces is calculated. In sculptured surface machining, a simple method to determine the cutter contact area is necessary since cutting geometry is complicated and cutter contact area changes continuously. In this study, the cutter contact area is determined from the Z-map of the surface geometry and current cutter location. To determine cutting edge element engagement, the cutting edge elements are projected onto the cutter plane normal to the Z-axis and compared with the cutter contact area obtained from the Z-map. Cutting forces acting on the engaged cutting edge elements are calculated using an empirical method. Empirical cutting mechanism parameters are set as functions of cutting edge element position angle in order to consider the cutting action variation along the cutting edge. The relationship between undeformed chip geometry and the cutter feed inclination angle is also analyzed. The resultant cutting force is calculated by numerical integration of cutting forces acting on the engaged cutting edge elements. A series of experiments were performed to verify the proposed cutting force estimation model. It is shown that the proposed method predicts cutting force effectively for any geometry including sculptured surfaces with cusp marks and a hole.
ISSN:0890-6955
1879-2170
DOI:10.1016/S0890-6955(99)00040-1