Mutation Glance: An Integrative Web Application for Analysing Mutations from Human Genetic Diseases
Although mutation analysis serves as a key part in making a definitive diagnosis about a genetic disease, it still remains a time-consuming step to interpret their biological implications through integration of various lines of archived information about genes in question. To expedite this evaluatio...
Gespeichert in:
Veröffentlicht in: | DNA research 2010-04, Vol.17 (3), p.197-208 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although mutation analysis serves as a key part in making a definitive diagnosis about a genetic disease, it still remains a time-consuming step to interpret their biological implications through integration of various lines of archived information about genes in question. To expedite this evaluation step of disease-causing genetic variations, here we developed Mutation Glance (http://rapid.rcai.riken.jp/mutation/), a highly integrated web-based analysis tool for analysing human disease mutations; it implements a user-friendly graphical interface to visualize about 40 000 known disease-associated mutations and genetic polymorphisms from more than 2600 protein-coding human disease-causing genes. Mutation Glance locates already known genetic variation data individually on the nucleotide and the amino acid sequences and makes it possible to cross-reference them with tertiary and/or quaternary protein structures and various functional features associated with specific amino acid residues in the proteins. We showed that the disease-associated missense mutations had a stronger tendency to reside in positions relevant to the structure/function of proteins than neutral genetic variations. From a practical viewpoint, Mutation Glance could certainly function as a 'one-stop' analysis platform for newly determined DNA sequences, which enables us to readily identify and evaluate new genetic variations by integrating multiple lines of information about the disease-causing candidate genes. |
---|---|
ISSN: | 1340-2838 1756-1663 |
DOI: | 10.1093/dnares/dsq010 |