Source term models for fine particle resuspension from indoor surfaces

Understanding the dispersion of contaminants inside buildings is important for improving indoor air quality (IAQ). Detailed information on the dispersion profile within a room is required to design active protection systems and to develop countermeasure strategies against potential threats from part...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Building and environment 2010-08, Vol.45 (8), p.1854-1865
Hauptverfasser: Kim, Yoojeong, Gidwani, Ashok, Wyslouzil, Barbara E., Sohn, Chang W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Understanding the dispersion of contaminants inside buildings is important for improving indoor air quality (IAQ). Detailed information on the dispersion profile within a room is required to design active protection systems and to develop countermeasure strategies against potential threats from particulate based agents. A number of computational fluid dynamics (CFD) codes in the public and commercial domain can simulate contaminant dispersion inside a building. One of the critical boundary conditions required by these CFD codes is a resuspension source term model. This paper develops general source term models for particle resuspension from indoor surfaces based on dimensional analysis. First, the physical mechanisms responsible for fine particle resuspension from indoor surfaces are investigated and relevant parameters are identified. Then, three different models are developed using dimensional analysis and published resuspension data in the literature. Finally, the models are evaluated against independent experimental data that were not used to determine the model coefficients.
ISSN:0360-1323
1873-684X
DOI:10.1016/j.buildenv.2010.02.016