Organic geochemical record of environmental changes in Lake Dianchi, China

In order to investigate the natural ecosystem of Lake Dianchi and to assess its anthropogenic impacts, a stratigraphic study of bulk and molecular compositions of organic matter was conducted using a 63-cm long sediment core. The results show that two apparent environmental changes occurred during t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of paleolimnology 2010-06, Vol.44 (1), p.217-231
Hauptverfasser: Xiong, Yongqiang, Wu, Fengchang, Fang, Jidun, Wang, Lifang, Li, Yun, Liao, Haiqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to investigate the natural ecosystem of Lake Dianchi and to assess its anthropogenic impacts, a stratigraphic study of bulk and molecular compositions of organic matter was conducted using a 63-cm long sediment core. The results show that two apparent environmental changes occurred during the evolution of Lake Dianchi: (1) the first change occurred in the 43–63 cm sediment depth, and was revealed by the amount and the composition of organic matter in the stage. Natural changes were possibly major factors responsible for triggering the environmental change, but the influence of human activities could not be excluded. Subsequently, the lake entered into a relatively stable and oligotrophic stage, which maintained until 20-cm sediment depth. (2) Eutrophication started in the upper 20 cm depth. Human activities became a major factor influencing environmental changes in this stage. Vertical profiles of various organic geochemical variables in the upper 20-cm sediments show evidence that primary productivity of the lake increased progressively and that the lake started eutrophic. Especially in the uppermost 10 cm, notable excursions to less negative δ 13 C org and δ 15 N total and high TOC concentrations have recorded an abrupt change in the lacustrine environment, suggesting that the lake entered a hypereutrophic stage. In addition, enhancement of αβ-hopanes reflects the contribution of fossil fuels to the lake sediments.
ISSN:0921-2728
1573-0417
DOI:10.1007/s10933-009-9398-4