global perspective on belowground carbon dynamics under nitrogen enrichment

Ecology Letters (2010) 13: 819-828 Nitrogen (N) effects on ecosystem carbon (C) budgets are critical to understand as C sequestration is considered as a mechanism to offset anthropogenic CO₂ emissions. Interactions between aboveground C and N cycling are more clearly characterized than belowground p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology letters 2010-07, Vol.13 (7), p.819-828
Hauptverfasser: Liu, Lingli, Greaver, Tara L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ecology Letters (2010) 13: 819-828 Nitrogen (N) effects on ecosystem carbon (C) budgets are critical to understand as C sequestration is considered as a mechanism to offset anthropogenic CO₂ emissions. Interactions between aboveground C and N cycling are more clearly characterized than belowground processes. Through synthesizing data from multiple terrestrial ecosystems, we quantified the responses of belowground C cycling under N addition. We found that N addition increased litter input from aboveground (+20%) but not from fine root. N addition inhibited microbial activity as indicated by a reduction in microbial respiration (-8%) and microbial biomass carbon (-20%). Although soil respiration was not altered by N addition, dissolved organic carbon concentration was increased by 18%, suggesting C leaching loss may increase. N addition increased the C content of the organic layer (+17%) but not the mineral soil layer. Overall, our meta-analysis indicates that N addition will increase short term belowground C storage by increasing C content of organic layer. However, it is difficult to predict the response of long term C sequestration since there is no significant change in mineral soil C content.
ISSN:1461-023X
1461-0248
DOI:10.1111/j.1461-0248.2010.01482.x