Nutrient flux and budget in the Ebro estuary

The Ebro river flows to the Mediterranean coast of Spain. During its final stretch, the Ebro behaves in a similar way to a highly stratified estuary. This paper describes the transport of nutrients to the Ebro estuary, evaluates the general movement of nutrients in the estuarine region, using a mass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Estuarine, coastal and shelf science coastal and shelf science, 2010-03, Vol.87 (1), p.92-102
Hauptverfasser: Falco, S., Niencheski, L.F., Rodilla, M., Romero, I., González del Río, J., Sierra, J.P., Mösso, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Ebro river flows to the Mediterranean coast of Spain. During its final stretch, the Ebro behaves in a similar way to a highly stratified estuary. This paper describes the transport of nutrients to the Ebro estuary, evaluates the general movement of nutrients in the estuarine region, using a mass balance approach, and estimates the amounts of nutrients discharged to the coastal environment. Given the strong saline stratification, this study only includes the surface layer that contains the continental freshwater. The annual nutrient budget for the Ebro estuary shows a net excess for nitrogen and phosphorus, while silicate almost attains equilibrium between addition and removal. There are several reasons for gains in nitrogen and phosphorous: a contribution of dissolved and particulate compounds in the freshwater (some of which are mineralized); a lower uptake of phytoplankton indicated by chlorophyll reduction in the estuary; an entrainment of the nutrient-rich upper part of the salt wedge; and, to a lesser extent, the impact of wastewater and agricultural water use. The biggest load discharged into the Mediterranean Sea by the Ebro is nitrogen, followed by silicate with over 10 000 tons of each deposited annually. Phosphorus is discharged at relatively low concentrations and with an annual load of about 200 t yr −1.
ISSN:0272-7714
1096-0015
DOI:10.1016/j.ecss.2009.12.020