Targeted Releasable Affinity Probe (TRAP) for In Vivo Photocrosslinking

A protein TRAP: The in vivo photocrosslinking of TRAP after its intracellular targeting to a binding sequence on the bait protein stabilizes protein interactions. Because the crosslinker is releasable, simple mass spectrometry can be used to identify the protein binding sites after purification.Prot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chembiochem : a European journal of chemical biology 2009-06, Vol.10 (9), p.1507-1518
Hauptverfasser: Yan, Ping, Wang, Ting, Newton, Gregory J, Knyushko, Tatyana V, Xiong, Yijia, Bigelow, Diana J, Squier, Thomas C, Mayer, M. Uljana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A protein TRAP: The in vivo photocrosslinking of TRAP after its intracellular targeting to a binding sequence on the bait protein stabilizes protein interactions. Because the crosslinker is releasable, simple mass spectrometry can be used to identify the protein binding sites after purification.Protein crosslinking, especially coupled to mass-spectrometric identification, is increasingly used to determine protein binding partners and protein-protein interfaces for isolated protein complexes. The modification of crosslinkers to permit their targeted use in living cells is of considerable importance for studying protein-interaction networks, which are commonly modulated through weak interactions that are formed transiently to permit rapid cellular response to environmental changes. We have therefore synthesized a targeted and releasable affinity probe (TRAP) consisting of a biarsenical fluorescein linked to benzophenone that binds to a tetracysteine sequence in a protein engineered for specific labeling. Here, the utility of TRAP for capturing protein binding partners upon photoactivation of the benzophenone moiety has been demonstrated in living bacteria and mammalian cells. In addition, ligand exchange of the arsenic-sulfur bonds between TRAP and the tetracysteine sequence to added dithiols results in fluorophore transfer to the crosslinked binding partner. In isolated protein complexes, this release from the original binding site permits the identification of the proximal binding interface through mass spectrometric fragmentation and computational sequence identification.
ISSN:1439-4227
1439-7633
DOI:10.1002/cbic.200900029