Multiple forms of human phosphoglycerate kinase

Phosphoglycerate kinase was isolated by affinity chromatography from human skeletal muscle and erythrocytes. As in the tissue extracts, the purified enzyme showed in Cellogel electrophoresis one major and two minor bands with phosphoglycerate kinase activity. The multiple forms were separated by chr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of biochemistry and biophysics 1979-04, Vol.193 (2), p.415-421
Hauptverfasser: Krietsch, Wolfgang K.G., Freier, Inge U., Eber, Stefan W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Phosphoglycerate kinase was isolated by affinity chromatography from human skeletal muscle and erythrocytes. As in the tissue extracts, the purified enzyme showed in Cellogel electrophoresis one major and two minor bands with phosphoglycerate kinase activity. The multiple forms were separated by chromatography on CM-Sepharose. From the three separated forms, A, B, and C, the latter was not detectable in electrophoresis of tissue extracts or in the purified unresolved phosphoglycerate kinase. The faintest, most anodically migrating form observed in the tissue extracts could not be isolated in pure form by chromatography on CM-Sepharose. The electrophoretic mobility of the phosphoglycerate kinase forms depended strongly on the buffer systems used. The different forms had identical molecular weight, substrate affinity, and heat stability and were inhibited to the same extent by antibody. They could also not be separated by column affinity chromatography. Small differences were found in thiol group content and in the specific activity, the latter being a consequence of diminished free sulfhydryl residues. Exposure to either reductive or oxidative conditions changed the specific activity, but did not result in interconversion among the pure forms. The multiple forms probably arise as a result of epigenetic factors occurring after the primary polypeptide chain has been synthesized.
ISSN:0003-9861
1096-0384
DOI:10.1016/0003-9861(79)90048-1