Performance analysis of CCHP and CHP systems operating following the thermal and electric load
Heating and cooling energy requirements for buildings are usually supplied by separated systems such as furnaces or boilers for heating, and vapor compression systems for cooling. For these types of buildings, the use of combined cooling, heating, and power (CCHP) systems or combined heating and pow...
Gespeichert in:
Veröffentlicht in: | International journal of energy research 2009-07, Vol.33 (9), p.852-864 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heating and cooling energy requirements for buildings are usually supplied by separated systems such as furnaces or boilers for heating, and vapor compression systems for cooling. For these types of buildings, the use of combined cooling, heating, and power (CCHP) systems or combined heating and power (CHP) systems are an alternative for energy savings. Different researchers have claimed that the use of CCHP and CHP systems reduces the energy consumption related to transmission and distribution of energy. However, most of these analyses are based on reduction of operating cost without measuring the actual energy use and emissions reduction. The objective of this study is to analyze the performance of CCHP and CHP systems operating following the electric load (FEL) and operating following the thermal load (FTL), based on primary energy consumption (PEC), operation cost, and carbon dioxide emissions (CDE) for different climate conditions. Results show that CCHP and CHP systems operated FTL reduce the PEC for all the evaluated cities. On the other hand, CHP systems operated FEL always increases the PEC. The only operation mode that reduces PEC and CDE while reducing the cost is CHP‐FTL. Copyright © 2009 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0363-907X 1099-114X |
DOI: | 10.1002/er.1526 |