Lipopolysaccharide: a potent inhibitor of viral-mediated type-I interferon induction

During the course of codifying low pathogenicity avian influenza, viruses were tested for their capacity to induce type-I interferon (IFN) and to measure their content of IFN induction-suppressing particles (ISP). One isolate caused a >10-fold reduction in the yield of IFN from chicken embryonic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of interferon & cytokine research 2010-05, Vol.30 (5), p.279-282
Hauptverfasser: Malinoski, Christopher P, Marcus, Philip I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During the course of codifying low pathogenicity avian influenza, viruses were tested for their capacity to induce type-I interferon (IFN) and to measure their content of IFN induction-suppressing particles (ISP). One isolate caused a >10-fold reduction in the yield of IFN from chicken embryonic cells co-infected with a virus that normally induces high yields of IFN. The apparent content of ISP was calculated to be approximately 100-fold higher than the number of physical particles of virus measured as hemagglutinating particles. This unrealistic interpretation prompted us to test for a soluble IFN induction-suppressing activity in the allantoic fluid freed of the virus by centrifugation. Indeed, the IFN induction-suppressing activity remained in the virus-free supernatant. The original virus stock subsequently was found to be contaminated with a Gram-negative bacterium, leading us to test lipopolysaccharide (LPS) as the putative IFN induction suppressor. Pure LPS mimicked in a similar dose-dependent manner the IFN induction-suppressing activity of the original allantoic fluid-derived virus, and the allantoic fluid freed of all virus and bacteria. The inhibition of viral-mediated type-I IFN induction by LPS was observed for viruses from 3 different families. These observations suggest that exposure of a host to endotoxin may compromise the IFN induction response of the innate immune system and thus exacerbate virus infection.
ISSN:1079-9907
1557-7465
DOI:10.1089/jir.2009.0086