Bright thermal atomic beams by laser cooling: A 1400-fold gain in beam flux

Using a three-step transverse laser cooling scheme, a strongly diverging flow of metastable Ne(3s super(3)P sub(2)) atoms is compressed into a well-collimated, small diameter atomic beam (e.g., 1.4 mrad HWHM divergence at 3.6 mm beam diameter) with an unmodified axial velocity distribution centered...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. B, Lasers and optics Lasers and optics, 1996-04, Vol.62 (4), p.323-327
Hauptverfasser: Hoogerland, M. D., Driessen, J. P. J., Vredenbregt, E. J. D., Megens, H. J. L., Schuwer, M. P., Beijerinck, H. C. W., van Leeuwen, K. A. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using a three-step transverse laser cooling scheme, a strongly diverging flow of metastable Ne(3s super(3)P sub(2)) atoms is compressed into a well-collimated, small diameter atomic beam (e.g., 1.4 mrad HWHM divergence at 3.6 mm beam diameter) with an unmodified axial velocity distribution centered at 580 m/s. The maximum increase in beam flux 1.04 m downstream of the source is a factor 1400; the maximum increase in phase space density, i.e., brightness, is a factor 160. The laser power used is only 140 mW. The scheme is extendable to a large variety of atomic species and enables the application of bright atomic beams in many areas of physics.
ISSN:0946-2171
1432-0649
DOI:10.1007/bf01081192