Investigation of heat pipe cooling in drilling applications.: part I: preliminary numerical analysis and verification
A combined numerical and experimental study is performed to analyze the feasibility of using heat pipe cooling in drilling applications. A parametric study is conducted to analyze the effect of different geometrical parameters expected for a heat pipe drill configuration, such as depth of the heat p...
Gespeichert in:
Veröffentlicht in: | International journal of machine tools & manufacture 2002-04, Vol.42 (5), p.643-652 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A combined numerical and experimental study is performed to analyze the feasibility of using heat pipe cooling in drilling applications. A parametric study is conducted to analyze the effect of different geometrical parameters expected for a heat pipe drill configuration, such as depth of the heat pipe within the drill, heat pipe diameter, heat flux input magnitude and length of the heat input zone. In this model, it is assumed that the drill is subjected to a static heat source which verifies the analysis and feasibility of using heat pipe cooling in drilling operations. The performance of the heat pipe drill model is approximated using a solid cylinder model of pure conduction. To validate the assumptions, numerical results are compared with experimental data that are based on the solid cylinder model. Both the numerical and experimental studies show that the use of a heat pipe in a drill can reduce the temperature field significantly. The results of this study can be used to define geometrical parameters for ‘optimal’ design and the setup for further analysis. |
---|---|
ISSN: | 0890-6955 1879-2170 |
DOI: | 10.1016/S0890-6955(01)00155-9 |