Bypass effect in high performance heat sinks
Studies using commercial computational fluid dynamics software, running on a supercomputer, were carried out to investigate the effects of fin density, inlet duct velocity, and clearance area ratio, on the extent of flow bypass and its impact on the thermal performance of the heat sink. Flow bypass...
Gespeichert in:
Veröffentlicht in: | Strojniski Vestnik 2001-01, Vol.47 (8), p.441-448 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Studies using commercial computational fluid dynamics software, running on a supercomputer, were carried out to investigate the effects of fin density, inlet duct velocity, and clearance area ratio, on the extent of flow bypass and its impact on the thermal performance of the heat sink. Flow bypass was found to increase with increasing fin density and clearance, while remaining relatively insensitive to inlet duct velocity. An optimum geometry, for a fixed inlet duct velocity, bypass clearance, fixed heat sink volume, and constant thickness, was determined. |
---|---|
ISSN: | 0039-2480 |