The repertoire of G-protein-coupled receptors in fully sequenced genomes
The superfamily of G-protein-coupled receptors (GPCRs) is one of the largest and most studied families of proteins. We created Hidden Markov Models derived from sorted groups of GPCRs from our previous detailed phylogenetic classification of human GPCRs and added several other models derived from re...
Gespeichert in:
Veröffentlicht in: | Molecular pharmacology 2005-05, Vol.67 (5), p.1414-1425 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The superfamily of G-protein-coupled receptors (GPCRs) is one of the largest and most studied families of proteins. We created Hidden Markov Models derived from sorted groups of GPCRs from our previous detailed phylogenetic classification of human GPCRs and added several other models derived from receptors not found in mammals. We used these models to search entire Genscan data sets from 13 species whose genomes are nearly completely sequenced. We found more than 5000 unique GPCRs that were divided into 15 main groups, and the largest one, the Rhodopsin family, was subdivided into 13 subclasses. The results show that the main families in the human genome, Glutamate, Rhodopsin, Adhesion, Frizzled, and Secretin, arose before the split of nematodes from the chordate lineage. Moreover, several of the subgroups of the Rhodopsin family arose before the split of the linage leading to vertebrates. We also searched expressed sequence tag (EST) databases and identified more than 20,000 sequences that match GPCRs. Although the GPCRs represent typically 1 to 2% of the Genscan predictions, the ESTs that match GPCRs are typically only 0.01 to 0.001%, indicating that GPCRs in most of the groups are expressed at low levels. We also provide searchable data sets that may be used for annotation and further detailed analysis of the GPCR family. This study provides an extensive overview of the expansion of the gene repertoire for families and subgroups of GPCRs. |
---|---|
ISSN: | 0026-895X 1521-0111 |
DOI: | 10.1124/mol.104.009001 |