A general theory for two- and three-dimensional wall-mode instabilities in boundary layers over isotropic and anisotropic compliant walls

An asymptotic theory is developed and applied to two- and three-dimensional disturbances developing in boundary layers over isotropic and anisotropic compliant walls. The theory utilizes the multideck structure of a two- dimensional boundary layer to derive asymptotic approximations at a high Reynol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and computational fluid dynamics 1990-01, Vol.1 (6), p.349-378
Hauptverfasser: Carpenter, Peter W., Gajjar, Jitesh S. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 378
container_issue 6
container_start_page 349
container_title Theoretical and computational fluid dynamics
container_volume 1
creator Carpenter, Peter W.
Gajjar, Jitesh S. B.
description An asymptotic theory is developed and applied to two- and three-dimensional disturbances developing in boundary layers over isotropic and anisotropic compliant walls. The theory utilizes the multideck structure of a two- dimensional boundary layer to derive asymptotic approximations at a high Reynolds number for the perturbation wall pressure and viscous stresses. The disturbances can be treated as either temporally or spatially growing. For isotropic compliant walls the theory confirms that the phase shift in the disturbance velocity across the critical layer plays a dominant role in destabilization of the class B traveling-wave flutter by making irreversible energy transfer possible due to the work done by the fluctuating wall pressure. For anisotropic walls an important mechanism for irreversible energy transfer is the work done by the shear stress fluctuations, which almost invariably have a stabilizing effect on the traveling-wave flutter. (S.A.V.)
doi_str_mv 10.1007/BF00271796
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_745674259</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>745674259</sourcerecordid><originalsourceid>FETCH-LOGICAL-c207t-a4209a413f920dd19ff1626e8e36ce182b1349f940ae5a15402a6a6e1738d63e3</originalsourceid><addsrcrecordid>eNp9kc1KxDAUhYMoOI5ufIKsFITqzU_TZjkOjgoDbnRdMu2tRtKkJh2HeQTf2jojuHN1OZePb3EOIecMrhlAcXO7AOAFK7Q6IBMmBc84z-GQTECLPJNayWNyktI7AIhclRPyNaOv6DEaR4c3DHFL2xDpsAkZNb4ZfxExa2yHPtngR2pjnMu60CC1Pg1mZZ0dLKYx0VVY-8aMCme2GBMNnxipTWGIobf1zmf8X65D1ztr_LBzplNy1BqX8Oz3TsnL4u55_pAtn-4f57NlVnMohsxIDtpIJlrNoWmYblumuMIShaqRlXzFhNStlmAwNyyXwI0yClkhykYJFFNyuff2MXysMQ1VZ1ONzhmPYZ2qQuaqkDzXI3nxL8lHUGsGI3i1B-sYUorYVn203dhExaD62aX620V8A-Aqgc8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25679910</pqid></control><display><type>article</type><title>A general theory for two- and three-dimensional wall-mode instabilities in boundary layers over isotropic and anisotropic compliant walls</title><source>Springer Nature - Complete Springer Journals</source><creator>Carpenter, Peter W. ; Gajjar, Jitesh S. B.</creator><creatorcontrib>Carpenter, Peter W. ; Gajjar, Jitesh S. B.</creatorcontrib><description>An asymptotic theory is developed and applied to two- and three-dimensional disturbances developing in boundary layers over isotropic and anisotropic compliant walls. The theory utilizes the multideck structure of a two- dimensional boundary layer to derive asymptotic approximations at a high Reynolds number for the perturbation wall pressure and viscous stresses. The disturbances can be treated as either temporally or spatially growing. For isotropic compliant walls the theory confirms that the phase shift in the disturbance velocity across the critical layer plays a dominant role in destabilization of the class B traveling-wave flutter by making irreversible energy transfer possible due to the work done by the fluctuating wall pressure. For anisotropic walls an important mechanism for irreversible energy transfer is the work done by the shear stress fluctuations, which almost invariably have a stabilizing effect on the traveling-wave flutter. (S.A.V.)</description><identifier>ISSN: 0935-4964</identifier><identifier>EISSN: 1432-2250</identifier><identifier>DOI: 10.1007/BF00271796</identifier><language>eng</language><subject>boundary layer flow ; stability</subject><ispartof>Theoretical and computational fluid dynamics, 1990-01, Vol.1 (6), p.349-378</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c207t-a4209a413f920dd19ff1626e8e36ce182b1349f940ae5a15402a6a6e1738d63e3</citedby><cites>FETCH-LOGICAL-c207t-a4209a413f920dd19ff1626e8e36ce182b1349f940ae5a15402a6a6e1738d63e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Carpenter, Peter W.</creatorcontrib><creatorcontrib>Gajjar, Jitesh S. B.</creatorcontrib><title>A general theory for two- and three-dimensional wall-mode instabilities in boundary layers over isotropic and anisotropic compliant walls</title><title>Theoretical and computational fluid dynamics</title><description>An asymptotic theory is developed and applied to two- and three-dimensional disturbances developing in boundary layers over isotropic and anisotropic compliant walls. The theory utilizes the multideck structure of a two- dimensional boundary layer to derive asymptotic approximations at a high Reynolds number for the perturbation wall pressure and viscous stresses. The disturbances can be treated as either temporally or spatially growing. For isotropic compliant walls the theory confirms that the phase shift in the disturbance velocity across the critical layer plays a dominant role in destabilization of the class B traveling-wave flutter by making irreversible energy transfer possible due to the work done by the fluctuating wall pressure. For anisotropic walls an important mechanism for irreversible energy transfer is the work done by the shear stress fluctuations, which almost invariably have a stabilizing effect on the traveling-wave flutter. (S.A.V.)</description><subject>boundary layer flow</subject><subject>stability</subject><issn>0935-4964</issn><issn>1432-2250</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNp9kc1KxDAUhYMoOI5ufIKsFITqzU_TZjkOjgoDbnRdMu2tRtKkJh2HeQTf2jojuHN1OZePb3EOIecMrhlAcXO7AOAFK7Q6IBMmBc84z-GQTECLPJNayWNyktI7AIhclRPyNaOv6DEaR4c3DHFL2xDpsAkZNb4ZfxExa2yHPtngR2pjnMu60CC1Pg1mZZ0dLKYx0VVY-8aMCme2GBMNnxipTWGIobf1zmf8X65D1ztr_LBzplNy1BqX8Oz3TsnL4u55_pAtn-4f57NlVnMohsxIDtpIJlrNoWmYblumuMIShaqRlXzFhNStlmAwNyyXwI0yClkhykYJFFNyuff2MXysMQ1VZ1ONzhmPYZ2qQuaqkDzXI3nxL8lHUGsGI3i1B-sYUorYVn203dhExaD62aX620V8A-Aqgc8</recordid><startdate>19900101</startdate><enddate>19900101</enddate><creator>Carpenter, Peter W.</creator><creator>Gajjar, Jitesh S. B.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TC</scope></search><sort><creationdate>19900101</creationdate><title>A general theory for two- and three-dimensional wall-mode instabilities in boundary layers over isotropic and anisotropic compliant walls</title><author>Carpenter, Peter W. ; Gajjar, Jitesh S. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c207t-a4209a413f920dd19ff1626e8e36ce182b1349f940ae5a15402a6a6e1738d63e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>boundary layer flow</topic><topic>stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carpenter, Peter W.</creatorcontrib><creatorcontrib>Gajjar, Jitesh S. B.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Theoretical and computational fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carpenter, Peter W.</au><au>Gajjar, Jitesh S. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A general theory for two- and three-dimensional wall-mode instabilities in boundary layers over isotropic and anisotropic compliant walls</atitle><jtitle>Theoretical and computational fluid dynamics</jtitle><date>1990-01-01</date><risdate>1990</risdate><volume>1</volume><issue>6</issue><spage>349</spage><epage>378</epage><pages>349-378</pages><issn>0935-4964</issn><eissn>1432-2250</eissn><abstract>An asymptotic theory is developed and applied to two- and three-dimensional disturbances developing in boundary layers over isotropic and anisotropic compliant walls. The theory utilizes the multideck structure of a two- dimensional boundary layer to derive asymptotic approximations at a high Reynolds number for the perturbation wall pressure and viscous stresses. The disturbances can be treated as either temporally or spatially growing. For isotropic compliant walls the theory confirms that the phase shift in the disturbance velocity across the critical layer plays a dominant role in destabilization of the class B traveling-wave flutter by making irreversible energy transfer possible due to the work done by the fluctuating wall pressure. For anisotropic walls an important mechanism for irreversible energy transfer is the work done by the shear stress fluctuations, which almost invariably have a stabilizing effect on the traveling-wave flutter. (S.A.V.)</abstract><doi>10.1007/BF00271796</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0935-4964
ispartof Theoretical and computational fluid dynamics, 1990-01, Vol.1 (6), p.349-378
issn 0935-4964
1432-2250
language eng
recordid cdi_proquest_miscellaneous_745674259
source Springer Nature - Complete Springer Journals
subjects boundary layer flow
stability
title A general theory for two- and three-dimensional wall-mode instabilities in boundary layers over isotropic and anisotropic compliant walls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A43%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20general%20theory%20for%20two-%20and%20three-dimensional%20wall-mode%20instabilities%20in%20boundary%20layers%20over%20isotropic%20and%20anisotropic%20compliant%20walls&rft.jtitle=Theoretical%20and%20computational%20fluid%20dynamics&rft.au=Carpenter,%20Peter%20W.&rft.date=1990-01-01&rft.volume=1&rft.issue=6&rft.spage=349&rft.epage=378&rft.pages=349-378&rft.issn=0935-4964&rft.eissn=1432-2250&rft_id=info:doi/10.1007/BF00271796&rft_dat=%3Cproquest_cross%3E745674259%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25679910&rft_id=info:pmid/&rfr_iscdi=true