Biomechanically and electromyographically assessed load on the spine in self-paced and force-paced lifting work
The purpose of this study was to measure dose of spinal load when different pacing methods were applied to lifting work and to develop methodology for such measurements. The compressive load on the spine computed by a dynamic biomechanical model and the electromyographic activity of back muscles wer...
Gespeichert in:
Veröffentlicht in: | Ergonomics 1992-07, Vol.35 (7-8), p.881-888 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of this study was to measure dose of spinal load when different pacing methods were applied to lifting work and to develop methodology for such measurements. The compressive load on the spine computed by a dynamic biomechanical model and the electromyographic activity of back muscles were used for describing the spinal load. Five men and five women worked in a laboratory on two days lifting a box up and down for 30 min on both days, on one day force-paced (4 lifts/min), and on the other self-paced in random order. The weight of the box was rated by the subjects to be acceptable for the work done. The lift rate of our female subjects was higher and that of the male subjects lower in self-paced than in force-paced work. There were no significant differences in peak lumbosacral compressions nor in the amplitude distributions of electromyography between the two pacing methods. The biomechanically-calculated compressive forces on the spine were lower (about 2.7 kN for the men and 2.3 kN for women) than the biomechanical recommendations for safe lifting, but the EMG activity showed quite high peaks so that for 1% of work time the activity was on women above 60% and on men above 40% of the activity during maximum isometric voluntary test contraction. |
---|---|
ISSN: | 0014-0139 1366-5847 |
DOI: | 10.1080/00140139208967368 |