The ultrastructure and histology of the perinotal epidermis and defensive glands of two species of Onchidella (Gastropoda: Pulmonata)

Abstract Histology and electron microscopy were used to describe and compare the structure of the perinotal epidermis and defensive glands of two species of shell-less marine Systellommatophora, Onchidella capensis and Onchidella hildae (Onchidiidae). The notum of both species is composed of a layer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tissue & cell 2010-04, Vol.42 (2), p.105-115
Hauptverfasser: Pinchuck, S.C, Hodgson, A.N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Histology and electron microscopy were used to describe and compare the structure of the perinotal epidermis and defensive glands of two species of shell-less marine Systellommatophora, Onchidella capensis and Onchidella hildae (Onchidiidae). The notum of both species is composed of a layer of epithelial and goblet cells covered by a multi-layered cuticle. Large perinotal multi-cellular glands, that produce thick white sticky mucus when irritated, are located within the sub-epidermal tissue. The glands are composed of several types of large secretory cell filled with products that stain for acidic, sulphated and neutral mucins, and some irregularly shaped support cells that surround a central lumen. The products of the secretory cells are produced by organelles that are basal in position. The entire gland is surrounded by a well-developed capsule of smooth muscle and collagen, and in addition smooth muscle surrounds the cells within the glands. Based on the size of the gland cells, their staining properties, and the appearance of their stored secretions at the transmission electron microscope level, five different types of secretory cells were identified in O. capensis and four in O. hildae . The products of these cells, which are released by holocrine secretion, presumably mix in the lumen of the duct as they are forced out by contraction of the smooth muscle. The structural similarity of these glands to those of siphonariids, suggest that they have a common ancestry.
ISSN:0040-8166
1532-3072
DOI:10.1016/j.tice.2010.02.001