Subduction styles in the Precambrian: Insight from numerical experiments
Plate tectonics is a self-organizing global system driven by the negative buoyancy of the thermal boundary layer resulting in subduction. Although the signature of plate tectonics is recognized with some confidence in the Phanerozoic geological record of the continents, evidence for plate tectonics...
Gespeichert in:
Veröffentlicht in: | Lithos 2010-05, Vol.116 (3), p.209-229 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Plate tectonics is a self-organizing global system driven by the negative buoyancy of the thermal boundary layer resulting in subduction. Although the signature of plate tectonics is recognized with some confidence in the Phanerozoic geological record of the continents, evidence for plate tectonics becomes less certain further back in time. To improve our understanding of plate tectonics on the Earth in the Precambrian we have to combine knowledge derived from the geological record with results from well-constrained numerical modeling.
In a series of experiments using a 2D petrological–thermomechanical numerical model of oceanic subduction we have systematically investigated the dependence of tectono-metamorphic and magmatic regimes at an active plate margin on upper-mantle temperature, crustal radiogenic heat production, degree of lithospheric weakening and other parameters. We have identified a first-order transition from a “no-subduction” tectonic regime through a “pre-subduction” tectonic regime to the modern style of subduction. The first transition is gradual and occurs at upper-mantle temperatures between 250 and 200 K above the present-day values, whereas the second transition is more abrupt and occurs at 175–160 K. The link between geological observations and model results suggests that the transition to the modern plate tectonic regime might have occurred during the Mesoarchean–Neoarchean time (ca. 3.2–2.5 Ga). In the case of the “pre-subduction” tectonic regime (upper-mantle temperature 175–250 K above the present) the plates are weakened by intense percolation of melts derived from the underlying hot melt-bearing sub-lithospheric mantle. In such cases, convergence does not produce self-sustaining one-sided subduction, but rather results in shallow underthrusting of the oceanic plate under the continental plate. Further increase in the upper-mantle temperature (>
250 K above the present) causes a transition to a “no-subduction” regime where horizontal movements of small deformable plate fragments are accommodated by internal strain and even shallow underthrusts do not form under the imposed convergence. Thus, based on the results of the numerical modeling, we suggest that the crucial parameter controlling the tectonic regime is the degree of lithospheric weakening induced by emplacement of sub-lithospheric melts into the lithosphere. A lower melt flux at upper-mantle temperatures <
175–160 K results in a lesser degree of melt-related weakening l |
---|---|
ISSN: | 0024-4937 1872-6143 |
DOI: | 10.1016/j.lithos.2009.05.028 |