Probing star formation with galactic cosmic rays
Cosmic-ray energy densities in central regions of starburst galaxies, as inferred from radio and γ-ray measurements of, respectively, non-thermal synchrotron and π0-decay emission, are typically , i.e. typically at least an order of magnitude larger than near the Galactic Centre and in other not-ver...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2010-04, Vol.403 (3), p.1569-1576 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cosmic-ray energy densities in central regions of starburst galaxies, as inferred from radio and γ-ray measurements of, respectively, non-thermal synchrotron and π0-decay emission, are typically , i.e. typically at least an order of magnitude larger than near the Galactic Centre and in other not-very-actively star-forming galaxies. We first show that these very different energy density levels reflect a similar disparity in the respective supernova (SN) rates in the two environments, which is not unexpected given the SN origin of (Galactic) energetic particles. As a consequence of this correspondence, we then demonstrate that there is partial quantitative evidence that the stellar initial mass function (IMF) in starburst nuclei has a low-mass truncation at ∼2 M⊙, as predicted by theoretical models of turbulent media, in contrast with the much smaller value of 0.1 M⊙ that characterizes the low-mass cut-off of the stellar IMF in ‘normal’ galactic environments. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1111/j.1365-2966.2009.16218.x |