Metabolism of S-adenosylhomocysteine and S-tubercidinylhomocysteine in neuroblastoma cells

The metabolism of the methylase product inhibitor S-adenosylhomocysteine and its 7-deaza analogue S-tubercidinylhomocysteine has been studied in cultured N-18 neuroblastoma cells. The latter compound, designed to resist metabolic degradation, has been shown to be inert under the same conditions wher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 1979-06, Vol.18 (12), p.2601-2609
Hauptverfasser: Crooks, Peter A, Dreyer, Robert N, Coward, James K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The metabolism of the methylase product inhibitor S-adenosylhomocysteine and its 7-deaza analogue S-tubercidinylhomocysteine has been studied in cultured N-18 neuroblastoma cells. The latter compound, designed to resist metabolic degradation, has been shown to be inert under the same conditions where S-adenosylhomocysteine is rapidly and extensively degraded. The product analyses elucidated by high-performance liquid chromatography indicate that the primary route of S-[8-(14)C]adenosylhomocysteine metabolism in these cells leads to adenosine. This product does not accumulate but is rapidly converted to nucleotides or oxypurines by the action of adenosine kinase and adenosine deaminase, respectively. The presence of the potent adenosine deaminase inhibitor coformycin leads to a pronounced inhibition of oxypurine formation, an increase in nucleotide formation, and a slight accumulation of the primary metabolic products adenosine and adenine.
ISSN:0006-2960
1520-4995
DOI:10.1021/bi00579a026