Mobility analysis of planar four-bar mechanisms through the parallel coordinate system
This paper presents a new method for the mobility analysis of planar mechanisms. The method utilizes a geometrical representation known as “parallel coordinates.” It is a transformation that maps the Euclidean space R N to N parallel coordinates in the projective plane. Points in R 2 are transformed...
Gespeichert in:
Veröffentlicht in: | Mechanism and machine theory 1986, Vol.21 (1), p.63-71 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 71 |
---|---|
container_issue | 1 |
container_start_page | 63 |
container_title | Mechanism and machine theory |
container_volume | 21 |
creator | Cohan, S.M Yang, D.C.H |
description | This paper presents a new method for the mobility analysis of planar mechanisms. The method utilizes a geometrical representation known as “parallel coordinates.” It is a transformation that maps the Euclidean space
R
N
to
N parallel coordinates in the projective plane. Points in
R
2 are transformed to line segments in the parallel coordinate plane, and circles in
R
2 are transformed to hyperbolae. Also, in this investigation, special techniques required for mobility analysis are developed. First, the intersection of circles is performed graphically through the parallel coordinate system. The parallel coordinate plane is then appended to relate this intersection data to the angular coordinates of the various members of the linkage. The ranges of these angular coordinates are the results of the mobility analysis.
Les auteurs présentent une nouvelle méthode d'analyse de la mobilité d'un mécanisme à quatre barres. On utilise une représentation géometrique connue sous le nom de “coordonnées parallèles” (PCS). Cette transformation arrange l'espace euclidien
R
N
en
N coordonnées parallèles dans le plan de projection. Ainsi les points en
R
2 se transforment en segments de droites et les cercles en
R
2 se transforment en hyperboles. On cherche d'abord l'intersection des cercles graphiquement à l'aide de PCS. Ce dernier est mis en relation avec les coordonnées angulaires des éléments du mécanisme qui determinent ainsi la mobilité de ce dernier. |
doi_str_mv | 10.1016/0094-114X(86)90030-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744963114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0094114X86900303</els_id><sourcerecordid>744963114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-390eaf3dbcea3a2691c9f4dfbd8d8faa9c7b40920cea050314b085c035e20d1b3</originalsourceid><addsrcrecordid>eNp9kMFuFDEMhiNUJLaFN-AwByTaw4Azycwkl0rVqrRIRVwAcYsyGYcNykyWeBZp354su9pjT7blz_7tn7G3HD5w4N1HAC1rzuXPa9XdaAABtXjBVlz1ohZa6wu2OiOv2CXRbwDoWylW7MeXNIQYln1lZxv3FKhKvtrGUuXKp12uh5JM6DZ2DjRRtWxy2v3alIjV1mYbI8bKpZTHMNsFK9rTgtNr9tLbSPjmFK_Y90_339aP9dPXh8_ru6faNQqWchyg9WIcHFphm05zp70c_TCqUXlrtesHCbqB0ocWBJcDqNaBaLGBkQ_iir0_7t3m9GeHtJgpkMNY7se0I9NLqTtR_i6kPJIuJ6KM3mxzmGzeGw7m4KI5WGQOFhnVmf8uGlHG3p0ELDkbfbazC3SeVX2rmk4V7PaIYXn2b8BsyAWcHY4ho1vMmMLzOv8AoUOH6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744963114</pqid></control><display><type>article</type><title>Mobility analysis of planar four-bar mechanisms through the parallel coordinate system</title><source>Elsevier ScienceDirect Journals</source><creator>Cohan, S.M ; Yang, D.C.H</creator><creatorcontrib>Cohan, S.M ; Yang, D.C.H</creatorcontrib><description>This paper presents a new method for the mobility analysis of planar mechanisms. The method utilizes a geometrical representation known as “parallel coordinates.” It is a transformation that maps the Euclidean space
R
N
to
N parallel coordinates in the projective plane. Points in
R
2 are transformed to line segments in the parallel coordinate plane, and circles in
R
2 are transformed to hyperbolae. Also, in this investigation, special techniques required for mobility analysis are developed. First, the intersection of circles is performed graphically through the parallel coordinate system. The parallel coordinate plane is then appended to relate this intersection data to the angular coordinates of the various members of the linkage. The ranges of these angular coordinates are the results of the mobility analysis.
Les auteurs présentent une nouvelle méthode d'analyse de la mobilité d'un mécanisme à quatre barres. On utilise une représentation géometrique connue sous le nom de “coordonnées parallèles” (PCS). Cette transformation arrange l'espace euclidien
R
N
en
N coordonnées parallèles dans le plan de projection. Ainsi les points en
R
2 se transforment en segments de droites et les cercles en
R
2 se transforment en hyperboles. On cherche d'abord l'intersection des cercles graphiquement à l'aide de PCS. Ce dernier est mis en relation avec les coordonnées angulaires des éléments du mécanisme qui determinent ainsi la mobilité de ce dernier.</description><identifier>ISSN: 0094-114X</identifier><identifier>EISSN: 1873-3999</identifier><identifier>DOI: 10.1016/0094-114X(86)90030-3</identifier><identifier>CODEN: MHMTAS</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>bars ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; linkages ; mechanisms ; Physics ; Solid dynamics (ballistics, collision, multibody system, stabilization...) ; Solid mechanics</subject><ispartof>Mechanism and machine theory, 1986, Vol.21 (1), p.63-71</ispartof><rights>1986</rights><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-390eaf3dbcea3a2691c9f4dfbd8d8faa9c7b40920cea050314b085c035e20d1b3</citedby><cites>FETCH-LOGICAL-c280t-390eaf3dbcea3a2691c9f4dfbd8d8faa9c7b40920cea050314b085c035e20d1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0094-114X(86)90030-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,4010,27904,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8758268$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cohan, S.M</creatorcontrib><creatorcontrib>Yang, D.C.H</creatorcontrib><title>Mobility analysis of planar four-bar mechanisms through the parallel coordinate system</title><title>Mechanism and machine theory</title><description>This paper presents a new method for the mobility analysis of planar mechanisms. The method utilizes a geometrical representation known as “parallel coordinates.” It is a transformation that maps the Euclidean space
R
N
to
N parallel coordinates in the projective plane. Points in
R
2 are transformed to line segments in the parallel coordinate plane, and circles in
R
2 are transformed to hyperbolae. Also, in this investigation, special techniques required for mobility analysis are developed. First, the intersection of circles is performed graphically through the parallel coordinate system. The parallel coordinate plane is then appended to relate this intersection data to the angular coordinates of the various members of the linkage. The ranges of these angular coordinates are the results of the mobility analysis.
Les auteurs présentent une nouvelle méthode d'analyse de la mobilité d'un mécanisme à quatre barres. On utilise une représentation géometrique connue sous le nom de “coordonnées parallèles” (PCS). Cette transformation arrange l'espace euclidien
R
N
en
N coordonnées parallèles dans le plan de projection. Ainsi les points en
R
2 se transforment en segments de droites et les cercles en
R
2 se transforment en hyperboles. On cherche d'abord l'intersection des cercles graphiquement à l'aide de PCS. Ce dernier est mis en relation avec les coordonnées angulaires des éléments du mécanisme qui determinent ainsi la mobilité de ce dernier.</description><subject>bars</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>linkages</subject><subject>mechanisms</subject><subject>Physics</subject><subject>Solid dynamics (ballistics, collision, multibody system, stabilization...)</subject><subject>Solid mechanics</subject><issn>0094-114X</issn><issn>1873-3999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNp9kMFuFDEMhiNUJLaFN-AwByTaw4Azycwkl0rVqrRIRVwAcYsyGYcNykyWeBZp354su9pjT7blz_7tn7G3HD5w4N1HAC1rzuXPa9XdaAABtXjBVlz1ohZa6wu2OiOv2CXRbwDoWylW7MeXNIQYln1lZxv3FKhKvtrGUuXKp12uh5JM6DZ2DjRRtWxy2v3alIjV1mYbI8bKpZTHMNsFK9rTgtNr9tLbSPjmFK_Y90_339aP9dPXh8_ru6faNQqWchyg9WIcHFphm05zp70c_TCqUXlrtesHCbqB0ocWBJcDqNaBaLGBkQ_iir0_7t3m9GeHtJgpkMNY7se0I9NLqTtR_i6kPJIuJ6KM3mxzmGzeGw7m4KI5WGQOFhnVmf8uGlHG3p0ELDkbfbazC3SeVX2rmk4V7PaIYXn2b8BsyAWcHY4ho1vMmMLzOv8AoUOH6A</recordid><startdate>1986</startdate><enddate>1986</enddate><creator>Cohan, S.M</creator><creator>Yang, D.C.H</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>1986</creationdate><title>Mobility analysis of planar four-bar mechanisms through the parallel coordinate system</title><author>Cohan, S.M ; Yang, D.C.H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-390eaf3dbcea3a2691c9f4dfbd8d8faa9c7b40920cea050314b085c035e20d1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>bars</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>linkages</topic><topic>mechanisms</topic><topic>Physics</topic><topic>Solid dynamics (ballistics, collision, multibody system, stabilization...)</topic><topic>Solid mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohan, S.M</creatorcontrib><creatorcontrib>Yang, D.C.H</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Mechanism and machine theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohan, S.M</au><au>Yang, D.C.H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mobility analysis of planar four-bar mechanisms through the parallel coordinate system</atitle><jtitle>Mechanism and machine theory</jtitle><date>1986</date><risdate>1986</risdate><volume>21</volume><issue>1</issue><spage>63</spage><epage>71</epage><pages>63-71</pages><issn>0094-114X</issn><eissn>1873-3999</eissn><coden>MHMTAS</coden><abstract>This paper presents a new method for the mobility analysis of planar mechanisms. The method utilizes a geometrical representation known as “parallel coordinates.” It is a transformation that maps the Euclidean space
R
N
to
N parallel coordinates in the projective plane. Points in
R
2 are transformed to line segments in the parallel coordinate plane, and circles in
R
2 are transformed to hyperbolae. Also, in this investigation, special techniques required for mobility analysis are developed. First, the intersection of circles is performed graphically through the parallel coordinate system. The parallel coordinate plane is then appended to relate this intersection data to the angular coordinates of the various members of the linkage. The ranges of these angular coordinates are the results of the mobility analysis.
Les auteurs présentent une nouvelle méthode d'analyse de la mobilité d'un mécanisme à quatre barres. On utilise une représentation géometrique connue sous le nom de “coordonnées parallèles” (PCS). Cette transformation arrange l'espace euclidien
R
N
en
N coordonnées parallèles dans le plan de projection. Ainsi les points en
R
2 se transforment en segments de droites et les cercles en
R
2 se transforment en hyperboles. On cherche d'abord l'intersection des cercles graphiquement à l'aide de PCS. Ce dernier est mis en relation avec les coordonnées angulaires des éléments du mécanisme qui determinent ainsi la mobilité de ce dernier.</abstract><cop>Oxford</cop><cop>New York, NY</cop><pub>Elsevier Ltd</pub><doi>10.1016/0094-114X(86)90030-3</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-114X |
ispartof | Mechanism and machine theory, 1986, Vol.21 (1), p.63-71 |
issn | 0094-114X 1873-3999 |
language | eng |
recordid | cdi_proquest_miscellaneous_744963114 |
source | Elsevier ScienceDirect Journals |
subjects | bars Exact sciences and technology Fundamental areas of phenomenology (including applications) linkages mechanisms Physics Solid dynamics (ballistics, collision, multibody system, stabilization...) Solid mechanics |
title | Mobility analysis of planar four-bar mechanisms through the parallel coordinate system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A52%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mobility%20analysis%20of%20planar%20four-bar%20mechanisms%20through%20the%20parallel%20coordinate%20system&rft.jtitle=Mechanism%20and%20machine%20theory&rft.au=Cohan,%20S.M&rft.date=1986&rft.volume=21&rft.issue=1&rft.spage=63&rft.epage=71&rft.pages=63-71&rft.issn=0094-114X&rft.eissn=1873-3999&rft.coden=MHMTAS&rft_id=info:doi/10.1016/0094-114X(86)90030-3&rft_dat=%3Cproquest_cross%3E744963114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=744963114&rft_id=info:pmid/&rft_els_id=0094114X86900303&rfr_iscdi=true |