Mobility analysis of planar four-bar mechanisms through the parallel coordinate system

This paper presents a new method for the mobility analysis of planar mechanisms. The method utilizes a geometrical representation known as “parallel coordinates.” It is a transformation that maps the Euclidean space R N to N parallel coordinates in the projective plane. Points in R 2 are transformed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanism and machine theory 1986, Vol.21 (1), p.63-71
Hauptverfasser: Cohan, S.M, Yang, D.C.H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 71
container_issue 1
container_start_page 63
container_title Mechanism and machine theory
container_volume 21
creator Cohan, S.M
Yang, D.C.H
description This paper presents a new method for the mobility analysis of planar mechanisms. The method utilizes a geometrical representation known as “parallel coordinates.” It is a transformation that maps the Euclidean space R N to N parallel coordinates in the projective plane. Points in R 2 are transformed to line segments in the parallel coordinate plane, and circles in R 2 are transformed to hyperbolae. Also, in this investigation, special techniques required for mobility analysis are developed. First, the intersection of circles is performed graphically through the parallel coordinate system. The parallel coordinate plane is then appended to relate this intersection data to the angular coordinates of the various members of the linkage. The ranges of these angular coordinates are the results of the mobility analysis. Les auteurs présentent une nouvelle méthode d'analyse de la mobilité d'un mécanisme à quatre barres. On utilise une représentation géometrique connue sous le nom de “coordonnées parallèles” (PCS). Cette transformation arrange l'espace euclidien R N en N coordonnées parallèles dans le plan de projection. Ainsi les points en R 2 se transforment en segments de droites et les cercles en R 2 se transforment en hyperboles. On cherche d'abord l'intersection des cercles graphiquement à l'aide de PCS. Ce dernier est mis en relation avec les coordonnées angulaires des éléments du mécanisme qui determinent ainsi la mobilité de ce dernier.
doi_str_mv 10.1016/0094-114X(86)90030-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_744963114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0094114X86900303</els_id><sourcerecordid>744963114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-390eaf3dbcea3a2691c9f4dfbd8d8faa9c7b40920cea050314b085c035e20d1b3</originalsourceid><addsrcrecordid>eNp9kMFuFDEMhiNUJLaFN-AwByTaw4Azycwkl0rVqrRIRVwAcYsyGYcNykyWeBZp354su9pjT7blz_7tn7G3HD5w4N1HAC1rzuXPa9XdaAABtXjBVlz1ohZa6wu2OiOv2CXRbwDoWylW7MeXNIQYln1lZxv3FKhKvtrGUuXKp12uh5JM6DZ2DjRRtWxy2v3alIjV1mYbI8bKpZTHMNsFK9rTgtNr9tLbSPjmFK_Y90_339aP9dPXh8_ru6faNQqWchyg9WIcHFphm05zp70c_TCqUXlrtesHCbqB0ocWBJcDqNaBaLGBkQ_iir0_7t3m9GeHtJgpkMNY7se0I9NLqTtR_i6kPJIuJ6KM3mxzmGzeGw7m4KI5WGQOFhnVmf8uGlHG3p0ELDkbfbazC3SeVX2rmk4V7PaIYXn2b8BsyAWcHY4ho1vMmMLzOv8AoUOH6A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>744963114</pqid></control><display><type>article</type><title>Mobility analysis of planar four-bar mechanisms through the parallel coordinate system</title><source>Elsevier ScienceDirect Journals</source><creator>Cohan, S.M ; Yang, D.C.H</creator><creatorcontrib>Cohan, S.M ; Yang, D.C.H</creatorcontrib><description>This paper presents a new method for the mobility analysis of planar mechanisms. The method utilizes a geometrical representation known as “parallel coordinates.” It is a transformation that maps the Euclidean space R N to N parallel coordinates in the projective plane. Points in R 2 are transformed to line segments in the parallel coordinate plane, and circles in R 2 are transformed to hyperbolae. Also, in this investigation, special techniques required for mobility analysis are developed. First, the intersection of circles is performed graphically through the parallel coordinate system. The parallel coordinate plane is then appended to relate this intersection data to the angular coordinates of the various members of the linkage. The ranges of these angular coordinates are the results of the mobility analysis. Les auteurs présentent une nouvelle méthode d'analyse de la mobilité d'un mécanisme à quatre barres. On utilise une représentation géometrique connue sous le nom de “coordonnées parallèles” (PCS). Cette transformation arrange l'espace euclidien R N en N coordonnées parallèles dans le plan de projection. Ainsi les points en R 2 se transforment en segments de droites et les cercles en R 2 se transforment en hyperboles. On cherche d'abord l'intersection des cercles graphiquement à l'aide de PCS. Ce dernier est mis en relation avec les coordonnées angulaires des éléments du mécanisme qui determinent ainsi la mobilité de ce dernier.</description><identifier>ISSN: 0094-114X</identifier><identifier>EISSN: 1873-3999</identifier><identifier>DOI: 10.1016/0094-114X(86)90030-3</identifier><identifier>CODEN: MHMTAS</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>bars ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; linkages ; mechanisms ; Physics ; Solid dynamics (ballistics, collision, multibody system, stabilization...) ; Solid mechanics</subject><ispartof>Mechanism and machine theory, 1986, Vol.21 (1), p.63-71</ispartof><rights>1986</rights><rights>1986 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-390eaf3dbcea3a2691c9f4dfbd8d8faa9c7b40920cea050314b085c035e20d1b3</citedby><cites>FETCH-LOGICAL-c280t-390eaf3dbcea3a2691c9f4dfbd8d8faa9c7b40920cea050314b085c035e20d1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/0094-114X(86)90030-3$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,4010,27904,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8758268$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Cohan, S.M</creatorcontrib><creatorcontrib>Yang, D.C.H</creatorcontrib><title>Mobility analysis of planar four-bar mechanisms through the parallel coordinate system</title><title>Mechanism and machine theory</title><description>This paper presents a new method for the mobility analysis of planar mechanisms. The method utilizes a geometrical representation known as “parallel coordinates.” It is a transformation that maps the Euclidean space R N to N parallel coordinates in the projective plane. Points in R 2 are transformed to line segments in the parallel coordinate plane, and circles in R 2 are transformed to hyperbolae. Also, in this investigation, special techniques required for mobility analysis are developed. First, the intersection of circles is performed graphically through the parallel coordinate system. The parallel coordinate plane is then appended to relate this intersection data to the angular coordinates of the various members of the linkage. The ranges of these angular coordinates are the results of the mobility analysis. Les auteurs présentent une nouvelle méthode d'analyse de la mobilité d'un mécanisme à quatre barres. On utilise une représentation géometrique connue sous le nom de “coordonnées parallèles” (PCS). Cette transformation arrange l'espace euclidien R N en N coordonnées parallèles dans le plan de projection. Ainsi les points en R 2 se transforment en segments de droites et les cercles en R 2 se transforment en hyperboles. On cherche d'abord l'intersection des cercles graphiquement à l'aide de PCS. Ce dernier est mis en relation avec les coordonnées angulaires des éléments du mécanisme qui determinent ainsi la mobilité de ce dernier.</description><subject>bars</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>linkages</subject><subject>mechanisms</subject><subject>Physics</subject><subject>Solid dynamics (ballistics, collision, multibody system, stabilization...)</subject><subject>Solid mechanics</subject><issn>0094-114X</issn><issn>1873-3999</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNp9kMFuFDEMhiNUJLaFN-AwByTaw4Azycwkl0rVqrRIRVwAcYsyGYcNykyWeBZp354su9pjT7blz_7tn7G3HD5w4N1HAC1rzuXPa9XdaAABtXjBVlz1ohZa6wu2OiOv2CXRbwDoWylW7MeXNIQYln1lZxv3FKhKvtrGUuXKp12uh5JM6DZ2DjRRtWxy2v3alIjV1mYbI8bKpZTHMNsFK9rTgtNr9tLbSPjmFK_Y90_339aP9dPXh8_ru6faNQqWchyg9WIcHFphm05zp70c_TCqUXlrtesHCbqB0ocWBJcDqNaBaLGBkQ_iir0_7t3m9GeHtJgpkMNY7se0I9NLqTtR_i6kPJIuJ6KM3mxzmGzeGw7m4KI5WGQOFhnVmf8uGlHG3p0ELDkbfbazC3SeVX2rmk4V7PaIYXn2b8BsyAWcHY4ho1vMmMLzOv8AoUOH6A</recordid><startdate>1986</startdate><enddate>1986</enddate><creator>Cohan, S.M</creator><creator>Yang, D.C.H</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TC</scope></search><sort><creationdate>1986</creationdate><title>Mobility analysis of planar four-bar mechanisms through the parallel coordinate system</title><author>Cohan, S.M ; Yang, D.C.H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-390eaf3dbcea3a2691c9f4dfbd8d8faa9c7b40920cea050314b085c035e20d1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>bars</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>linkages</topic><topic>mechanisms</topic><topic>Physics</topic><topic>Solid dynamics (ballistics, collision, multibody system, stabilization...)</topic><topic>Solid mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohan, S.M</creatorcontrib><creatorcontrib>Yang, D.C.H</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical Engineering Abstracts</collection><jtitle>Mechanism and machine theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohan, S.M</au><au>Yang, D.C.H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mobility analysis of planar four-bar mechanisms through the parallel coordinate system</atitle><jtitle>Mechanism and machine theory</jtitle><date>1986</date><risdate>1986</risdate><volume>21</volume><issue>1</issue><spage>63</spage><epage>71</epage><pages>63-71</pages><issn>0094-114X</issn><eissn>1873-3999</eissn><coden>MHMTAS</coden><abstract>This paper presents a new method for the mobility analysis of planar mechanisms. The method utilizes a geometrical representation known as “parallel coordinates.” It is a transformation that maps the Euclidean space R N to N parallel coordinates in the projective plane. Points in R 2 are transformed to line segments in the parallel coordinate plane, and circles in R 2 are transformed to hyperbolae. Also, in this investigation, special techniques required for mobility analysis are developed. First, the intersection of circles is performed graphically through the parallel coordinate system. The parallel coordinate plane is then appended to relate this intersection data to the angular coordinates of the various members of the linkage. The ranges of these angular coordinates are the results of the mobility analysis. Les auteurs présentent une nouvelle méthode d'analyse de la mobilité d'un mécanisme à quatre barres. On utilise une représentation géometrique connue sous le nom de “coordonnées parallèles” (PCS). Cette transformation arrange l'espace euclidien R N en N coordonnées parallèles dans le plan de projection. Ainsi les points en R 2 se transforment en segments de droites et les cercles en R 2 se transforment en hyperboles. On cherche d'abord l'intersection des cercles graphiquement à l'aide de PCS. Ce dernier est mis en relation avec les coordonnées angulaires des éléments du mécanisme qui determinent ainsi la mobilité de ce dernier.</abstract><cop>Oxford</cop><cop>New York, NY</cop><pub>Elsevier Ltd</pub><doi>10.1016/0094-114X(86)90030-3</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-114X
ispartof Mechanism and machine theory, 1986, Vol.21 (1), p.63-71
issn 0094-114X
1873-3999
language eng
recordid cdi_proquest_miscellaneous_744963114
source Elsevier ScienceDirect Journals
subjects bars
Exact sciences and technology
Fundamental areas of phenomenology (including applications)
linkages
mechanisms
Physics
Solid dynamics (ballistics, collision, multibody system, stabilization...)
Solid mechanics
title Mobility analysis of planar four-bar mechanisms through the parallel coordinate system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A52%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mobility%20analysis%20of%20planar%20four-bar%20mechanisms%20through%20the%20parallel%20coordinate%20system&rft.jtitle=Mechanism%20and%20machine%20theory&rft.au=Cohan,%20S.M&rft.date=1986&rft.volume=21&rft.issue=1&rft.spage=63&rft.epage=71&rft.pages=63-71&rft.issn=0094-114X&rft.eissn=1873-3999&rft.coden=MHMTAS&rft_id=info:doi/10.1016/0094-114X(86)90030-3&rft_dat=%3Cproquest_cross%3E744963114%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=744963114&rft_id=info:pmid/&rft_els_id=0094114X86900303&rfr_iscdi=true