The Effect of Prior Cold Work on Tensile Residual Stress Development in Nuclear Weldments

Austenitic alloy weldments in nuclear reactor systems are susceptible to stress corrosion cracking (SCC) failures. SCC has been observed for decades and continues to be a primary maintenance concern for both pressurized water and boiling water reactors. SCC can occur if the sum of residual stress an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pressure vessel technology 2002-08, Vol.124 (3), p.359-365
Hauptverfasser: Hornbach, Douglas J, Preve´y, Paul S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Austenitic alloy weldments in nuclear reactor systems are susceptible to stress corrosion cracking (SCC) failures. SCC has been observed for decades and continues to be a primary maintenance concern for both pressurized water and boiling water reactors. SCC can occur if the sum of residual stress and applied stress exceeds a critical threshold tensile stress. Residual stresses developed by prior machining and welding can accelerate or retard SCC depending on their sign and magnitude. The residual stress, cold work and yield strength distributions on the inside diameter of an Alloy 600 tube J-welded into a pressure vessel were determined by a combination of X-ray diffraction (XRD) and mechanical techniques. A new method was used to relate the XRD line broadening to the percent cold work or true plastic strain in the Alloy 600 tube. The accumulated cold work in the layers deformed by prior machining, in combination with the true stress-strain relationship for Alloy 600, was used to determine the increase in yield strength as a result of deformation due to machining and weld shrinkage. The yield strength of the deformed layer was found to be well in excess of the bulk yield for the alloy, and is therefore capable of supporting residual stresses correspondingly higher. Tension as high as +700 MPa, exceeding the SCC threshold stress, was observed in both the hoop and axial directions on the inside diameter of the Alloy 600 tubing adjacent to the weld heat affected zone (HAZ). The cold worked high tensile zones correlated with the locations of field SCC failures. The tensile residual stresses are shown to result from a combination of the high cold working from initial machining followed by weld shrinkage. The development of surface tension during weld shrinkage has been modeled using finite element methods, and the benefits of minimizing or removing the cold worked layer prior to welding are demonstrated. Further laboratory studies showing the influence of prior cold working on the formation of residual stresses following bulk plastic deformation are presented.
ISSN:0094-9930
1528-8978
DOI:10.1115/1.1481035