Continuous transformation learning of translation invariant representations

We show that spatial continuity can enable a network to learn translation invariant representations of objects by self-organization in a hierarchical model of cortical processing in the ventral visual system. During ‘continuous transformation learning', the active synapses from each overlapping...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental brain research 2010-07, Vol.204 (2), p.255-270
Hauptverfasser: Perry, G, Rolls, E. T, Stringer, S. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that spatial continuity can enable a network to learn translation invariant representations of objects by self-organization in a hierarchical model of cortical processing in the ventral visual system. During ‘continuous transformation learning', the active synapses from each overlapping transform are associatively modified onto the set of postsynaptic neurons. Because other transforms of the same object overlap with previously learned exemplars, a common set of postsynaptic neurons is activated by the new transforms, and learning of the new active inputs onto the same postsynaptic neurons is facilitated. We show that the transforms must be close for this to occur; that the temporal order of presentation of each transformed image during training is not crucial for learning to occur; that relatively large numbers of transforms can be learned; and that such continuous transformation learning can be usefully combined with temporal trace training.
ISSN:0014-4819
1432-1106
DOI:10.1007/s00221-010-2309-0