Comparison of plasma-sprayed coatings produced in argon or nitrogen atmosphere

When spraying is conducted at ambient atmosphere, the entrainment of air cools the plasma jet and affects its expansion. It can also cause oxidation or chemical decomposition of the sprayed materials. Inert plasma spraying (IPS), generally conducted in an argon atmosphere, prevents these phenomena....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal spray technology 1998-12, Vol.7 (4), p.527-536
Hauptverfasser: LEYLAVERGNE, M, DUSSOUBS, B, VARDELLE, A, GOUBOT, N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When spraying is conducted at ambient atmosphere, the entrainment of air cools the plasma jet and affects its expansion. It can also cause oxidation or chemical decomposition of the sprayed materials. Inert plasma spraying (IPS), generally conducted in an argon atmosphere, prevents these phenomena. However, the main drawbacks of IPS in comparison with air plasma spraying are the capital and operating costs. This paper presents a study in which nitrogen is used as a substitute for conventional argon atmosphere, thus reducing costs by 25 to 30%. Titanium carbide and niobium powders were sprayed in both argon and nitrogen atmospheres. Cryogenic cooling of the substrate was used during the spray process. This helps to maintain a low temperature in the chamber, produce thick coatings, and allows the use of substrate materials that are sensitive to heat. The velocity, temperature, and composition fields of the argon-hydrogen plasma jet flowing in argon or nitrogen at atmospheric pressure are compared from numerical simulation. The adhesion, roughness, and microstructure of the niobium and TiC coatings produced in both atmospheres are discussed as well as their nitrogen content.
ISSN:1059-9630
1544-1016
DOI:10.1361/105996398770350756