Subpolar High Anomaly Preconditioning Precipitation over South America
The mechanisms associated with the intraseasonal variability of precipitation over South America during the spring season are investigated with emphasis on the influence of a quasi-stationary anomalous circulation over the southeastern South Pacific Ocean (SEP). A spectral analysis performed to the...
Gespeichert in:
Veröffentlicht in: | Journal of the atmospheric sciences 2010-05, Vol.67 (5), p.1526-1542 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mechanisms associated with the intraseasonal variability of precipitation over South America during the spring season are investigated with emphasis on the influence of a quasi-stationary anomalous circulation over the southeastern South Pacific Ocean (SEP). A spectral analysis performed to the bandpass-filtered time series of daily precipitation anomalies for the La Plata Basin (LPB) and the South Atlantic convergence zone (SACZ) regions revealed several statistically relevant peaks corresponding to periods of roughly 23 days and 14–16 days—with the lower (higher) frequency peaks more prevalent for the SACZ (LPB). The large-scale circulation patterns preconditioning precipitation variability over both regions were explored by means of a regression analysis performed on the daily 500-hPa geopotential anomaly field provided by the NCEP–NCAR reanalysis dataset. The most prominent feature of the regression fields is the presence of a quasi-stationary anomalous anticyclonic (cyclonic) circulation over the southeastern South Pacific Ocean associated with positive rainfall anomalies over the LPB (SACZ) and, emanating from that high (low), an external Rossby wave propagating northeastward toward the South American continent. The synoptic-scale activity, quantified in terms of a frontal activity index, showed a strong influence on precipitation over the LPB and to a lesser extent over the SACZ. Moreover, the frontal activity is actually modulated by the anomalous high circulation over the SEP region. The behavior of this anomalous circulation may be supported by a positive feedback mechanism that can enhance the response of the high anomaly itself, which in turns reinforces the Rossby wave train propagating toward the South American continent. |
---|---|
ISSN: | 0022-4928 1520-0469 |
DOI: | 10.1175/2009jas3309.1 |