Atmospheric diabatic heating and summertime circulation in Asia—Africa area
Utilizing data from NCEP/ NCAR reanalysis, the summertime atmospheric diabatic heating due to different physical processes is investigated over the Sahara desert, the Tibetan Plateau, and the Bay of Bengal. Atmospheric circulation systems in summer over these three areas are also studied. Thermal ad...
Gespeichert in:
Veröffentlicht in: | Advances in atmospheric sciences 2001-01, Vol.18 (2), p.257-269 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Utilizing data from NCEP/ NCAR reanalysis, the summertime atmospheric diabatic heating due to different physical processes is investigated over the Sahara desert, the Tibetan Plateau, and the Bay of Bengal. Atmospheric circulation systems in summer over these three areas are also studied. Thermal adaptation theory is employed to explain the relationship between the circulation and the atmospheric diabatic heating. Over the Sahara desert, heating resulting from the surface sensible heat flux dominates the near-surface layer, while radiative cooling is dominant upward from the boundary layer. There is positive vorticity in the shallow boundary layer and negative vorticity in the middle and upper troposphere. Downward motion prevails over the Sahara desert, except in the shallow near--surface layer where weak ascent exists in summer. Over the Tibetan Plateau, strong vertical diffusion resulting from intense surface sensible heat flux to the overlying atmosphere contributes most to the boundary layer heating, condensation associated with large--scale ascent is another contributor to the lower layer heating. Latent heat release accompanying deep convection is critical in offsetting longwave radiative cooling in the middle and upper troposphere. The overall diabatic heating is positive in the whole troposphere in summer, with the most intense heating located in the boundary layer. Convergence and positive vorticity occur in the shallow near--surface layer and divergence and negative vorticity exist deeply in the middle and upper troposphere. Accordingly, upward motion prevails over the Plateau in summer, with the most intense rising occurring near the ground surface. Over the Bay of Bengal, summertime latent heat release associated with deep convection exceeds longwave radiative cooling, resulting in intense heating in almost the whole troposphere. The strongest heating over the Bay of Bengal is located around 400 hPa, resulting in the most intense rising occurring between 300 hPa and 400 hPa, and producing positive vorticity in the lower troposphere and negative vorticity in the upper troposphere. It is also shown that the divergent circulation is from a heat source region to a sink region in the upper troposphere and vice versa in lower layers.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0256-1530 1861-9533 |
DOI: | 10.1007/s00376-001-0018-0 |