Study on ann-based multi-step prediction model of short-term climatic variation
In the context of 1905-1995 series from Nanjing and Hangzhou, study is undertaken of estab-lishing a predictive model of annual mean temperature in 1996-2005 to come over the Changjiang (Yangtze River) delta region through mean generating function and artificial neural network in combination. Result...
Gespeichert in:
Veröffentlicht in: | Advances in atmospheric sciences 2000-01, Vol.17 (1), p.157-164 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the context of 1905-1995 series from Nanjing and Hangzhou, study is undertaken of estab-lishing a predictive model of annual mean temperature in 1996-2005 to come over the Changjiang (Yangtze River) delta region through mean generating function and artificial neural network in combination. Results show that the established model yields mean error of 0.45°C for their abso-lute values of annual mean temperature from 10 yearly independent samples (1986-1995) and the difference between the mean predictions and related measurements is 0.156°C. The developed model is found superior to a mean generating function regression model both in historical data fit-ting and independent sample prediction.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0256-1530 1861-9533 |
DOI: | 10.1007/s00376-000-0051-4 |