Accuracy of Satellite Sea Surface Temperatures at 7 and 11 GHz
Satellite microwave radiometers capable of accurately retrieving sea surface temperature (SST) have provided great advances in oceanographic research. A number of future satellite missions are planned to carry microwave radiometers of various designs and orbits. While it is well known that the 11 GH...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2010-03, Vol.48 (3), p.1009-1018 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Satellite microwave radiometers capable of accurately retrieving sea surface temperature (SST) have provided great advances in oceanographic research. A number of future satellite missions are planned to carry microwave radiometers of various designs and orbits. While it is well known that the 11 GHz SST retrievals are less accurate than the 7 GHz retrievals, particularly in colder waters, it has not been demonstrated using existing microwave data. The Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) provides the means to examine the accuracies of SST retrievals using these channels in a systematic manner. In this paper, the accuracies of SSTs at 7 and 11 GHz are determined using two approaches: modeled and empirical. The modeled accuracies are calculated using an emissivity model and climatology SSTs, while empirical accuracies are estimated through validation of AMSR-E 7 and 11 GHz SST retrievals using over six years of data. It was found that the 7 GHz SST retrievals have less errors due to radiometer noise and geophysical errors than the 11 GHz retrievals at all latitudes. Additionally, while averaging the 11 GHz retrievals will diminish error due to uncorrelated radiometer noise, the geophysical error is still higher than for the 7 GHz retrievals, particularly at the higher latitudes. |
---|---|
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2009.2030322 |