Organized Structure of Active Turbulence Over an Array of Cubes within the Logarithmic Layer of Atmospheric Flow
We investigate the coherent structure of atmosphere turbulence over very large roughness within a fully rough, high Reynolds number turbulent flow. The horizontal distributions of coherent turbulence were determined by multipoint measurements of velocity fluctuations using sonic anemometers in a com...
Gespeichert in:
Veröffentlicht in: | Boundary-layer meteorology 2010-05, Vol.135 (2), p.209-228 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the coherent structure of atmosphere turbulence over very large roughness within a fully rough, high Reynolds number turbulent flow. The horizontal distributions of coherent turbulence were determined by multipoint measurements of velocity fluctuations using sonic anemometers in a comprehensive outdoor scale model experiment for urban climate (COSMO). COSMO is made up of 512 cubical obstacles, each 1.5 m on a side, arranged in a rectangular pattern on a flat 50 m × 100 m concrete plate. A total of 15 sets of sonic anemometers were aligned horizontally within the logarithmic layer above this site. The velocity fluctuations observed in COSMO were decomposed into active and inactive contributions by applying a spatial-filtering method, and which used a simple moving average along the spanwise direction of the predominant flow as a filter function. The size of the filter should be between the sizes of the active and inactive fluctuations. This method potentially eliminates the considerable portion of low frequency modes included in the horizontal velocity fluctuation, while preserving well the Reynolds stress. The structural characteristics of the active turbulence were qualitatively similar to those measured over various surface configurations. Overall, the observed structures of the active turbulence are composed of very large streaks of low momentum fluid elongated in the streamwise direction with some sub-structures included in the streaks. The sub-structures were the main cause of the ejections, which accompany horizontal vortices. The active motion, including the streaky structures, did not reproduce the lower frequency peak of the bi-modal distribution of the horizontal velocity spectra, but reproduced the higher frequency mode that robustly follows inner-layer similarity (i.e. Monin-Obukhov similarity). |
---|---|
ISSN: | 0006-8314 1573-1472 |
DOI: | 10.1007/s10546-010-9477-0 |