Edge-based finite element method for shallow water equations
This paper describes an edge‐based implementation of the generalized residual minimum (GMRES) solver for the fully coupled solution of non‐linear systems arising from finite element discretization of shallow water equations (SWEs). The gain in terms of memory, floating point operations and indirect...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in fluids 2001-07, Vol.36 (6), p.659-685 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper describes an edge‐based implementation of the generalized residual minimum (GMRES) solver for the fully coupled solution of non‐linear systems arising from finite element discretization of shallow water equations (SWEs). The gain in terms of memory, floating point operations and indirect addressing is quantified for semi‐discrete and space–time analyses. Stabilized formulations, including Petrov–Galerkin models and discontinuity‐capturing operators, are also discussed for both types of discretization. Results illustrating the quality of the stabilized solutions and the advantages of using the edge‐based approach are presented at the end of the paper. Copyright © 2001 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0271-2091 1097-0363 |
DOI: | 10.1002/fld.151 |