Chondrotoxicity of Low pH, Epinephrine, and Preservatives Found in Local Anesthetics Containing Epinephrine

Background: Recent clinical and basic science investigations have revealed the chondrotoxicity of local anesthetics, especially those containing epinephrine, administered via an intra-articular pain pump. However, the exact mechanism of toxicity is unknown. This study evaluates the chondrotoxicity o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American journal of sports medicine 2010-06, Vol.38 (6), p.1154-1159
Hauptverfasser: Dragoo, Jason L., Korotkova, Tatiana, Kim, Hyeon Joo, Jagadish, Anubhav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background: Recent clinical and basic science investigations have revealed the chondrotoxicity of local anesthetics, especially those containing epinephrine, administered via an intra-articular pain pump. However, the exact mechanism of toxicity is unknown. This study evaluates the chondrotoxicity of low pH, epinephrine, and preservatives found in commonly used local anesthetics. Hypothesis: The chondrotoxicity of local anesthetics containing epinephrine is due to low pH, epinephrine, or the preservative sodium metabisulfite. Study Design: Controlled laboratory study. Methods: Human chondrocytes were harvested and cultured in a custom bioreactor designed to simulate metabolism of medication. Pain pumps were used to infuse one of the following medications into the culture system: control media; media titrated to pH 4.5, 5.0, 5.5, 6.0, 6.5; media with 1:100000 or 1:200000 epinephrine only; media with 0.5 mg/mL of sodium metabisulfite preservative; media with 0.5 mg/mL of methylparaben preservative, 0.25% bupivacaine, 0.25% bupivacaine with epinephrine, 1% lidocaine, and 1% lidocaine with epinephrine. Cultures were perfused for 24 hours and then were stained with live/dead cell viability assay. The chondrocytes were then examined by fluorescence microscopy and counted, and the percentage of cell death was calculated. Results: Cultures containing media titrated to pH 4.5 and 5.0 and local anesthetics containing epinephrine (pH 4.0-5.5) had high cell death rates compared with controls at all time points (P < .001), while cultures containing 1:100000 and 1:200000 epinephrine alone had no increased death rate. Also, 0.5 mg/mL sodium metabisulfite preservative had a significant effect on cell death (P < .034); however, the preservative methylparaben had no effect (P > .05). The percentage of cell death was not significant for 1% lidocaine (12.5%; P > .943) and 0.25% bupivacaine (16.5%; P > .609). Conclusion: The marked chondrotoxicity of local anesthetics containing epinephrine appears to be a combined effect of low pH, as these medications are titrated to pH 4.0 to 5.5 for product stability, and the preservative sodium metabisulfite. Extreme caution should be exercised when using intra-articular pain pumps with local anesthetics containing epinephrine. Clinical Relevance: Understanding the causes of chondrotoxicity using local anesthetics containing epinephrine is critical to decrease complications associated with this class of medications.
ISSN:0363-5465
1552-3365
DOI:10.1177/0363546509359680